
C++ Toolkit Book The CORELIB Module

8-1

8. The CORELIB Module
Created: April 1, 2003
Updated: February 4, 2004

The CORELIB API [Library xncbi:include | src]
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
The CORELIB provides a portable low-level API and many useful application framework classes for
argument processing, diagnostics, environment interface, object and reference classes, portability
definitions, portable exceptions, stream wrappers, string manipulation, threads, etc.
This chapter provides reference material for many of CORELIB's facilities. For an overview of CORELIB
please refer to the CORELIB section in the introductory chapter on the C++ Toolkit.
NB:The CORELIB must be linked to every executable which uses the NCBI C++ toolkit!

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Writing a Simple Application

• NCBI C++ Toolkit Application Framework Classes

• CNcbiApplication

• CNcbiArguments

• CNcbiEnvironment

• CNcbiRegistry

• CNcbiDiag

• Creating a Simple Application

• UNIX Systems

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib

C++ Toolkit Book The CORELIB Module

8-2

• MS Windows

• Discussion of the Sample Application

• Inside the NCBI Application class

• Processing Command Line Arguments

• Capabilities of the Command Line API

• The Relationships Between the CArgDescriptions, CArgs, and CArgValue classes

• Command Line Syntax

• The CArgDescriptions (*) class

• The CArgDescriptions Constructor

• Describing Argument Attributes

• Argument Types

• Restricting the Input Argument Values

• Implementing User-Defined Restrictions Using the CArgAllow class

• Using CArgDescriptions in Applications

• Generating a USAGE Message

• The CArgs (*) class: A container class for CArgValue (*) objects

• CArgValue (*) class: The Internal Representation of Argument Values

• Code Examples

• Namespace, Name Concatenation and Compiler Specific Macros

• NCBI Namespace

• Other Name Space Macros

• Name Concatenation

• Compiler Specific Macros

C++ Toolkit Book The CORELIB Module

8-3

• Using the CNcbiRegistry Class

• Working with the Registry class: CNcbiRegistry

• Syntax of the Registry Configuration File

• Search Order for Initialization (*.ini) Files

• Setting Persistency and Modifiability of Registry Parameters Using CNcbiRegistry::EFlags

• Main Methods of CNcbiRegistry

• Additional Registry Methods

• Portable Stream Wrappers

• Working with Diagnostic Streams (*)

• Setting Diagnostic Severity Levels

• Controlling Apperance of Diagnostic Message using Post Flags

• Defining the Output Stream

• The Message Buffer

• Error codes and their Descriptions

• Preparing an Error Message File

• Using Error Codes in a Program

• Defining Custom Handlers using CDiagHandler

• The ERR_POST Macro

• The _TRACE macro

• Example Usage of the CNcbiDiag class

• Debug Macros

• Handling Exceptions

C++ Toolkit Book The CORELIB Module

8-4

• Defining the Standard NCBI C++ types and their Limits

• Headers Files containing Portability Definitions

• Built-in Integral Types

• Auxiliary Types

• Fixed-size Integer Types

• The "Ncbi_BigScalar" Type

• Encouraged and Discouraged Types

• Understanding Smart Pointers: the CObject and CRef Classes

• STL auto_ptrs

• The CRef (*) Class

• The CObject (*) Class

• The CObjectFor (*) class: using smart pointers for standard types

• When to use CRefs and auto_ptrs

• CRef Pitfalls

• Inadvertent Object Destruction

• Atomic Counters

• Portable mechanisms for loading DLLs

• CDll Constructor

• CDll Basename

• Other CDll Methods

• Executing Commands and Spawing Processes using the CExec class

• Executing a System Command using the System() Method

• Defining Spawned Process Modes (EMode type)

C++ Toolkit Book The CORELIB Module

8-5

• Spawning a Process using SpawnX() Methods

• Waiting for a Process to Terminate using the Wait() method

• Implementing Parralelism using Threads and Synchronization Mechanisms

• Using Threads

• CThread (*) class public methods

• CThread (*) class protected methods

• Thread Life Cycle

• Referencing Thread Objects

• Thread local storage (CTls<> class [*])

• Mutexes

• CMutex

• CFastMutex

• SSystemMutex and SSystemFastMutex

• CMutexGuard and CFastMutexGuard

• Lock Classes

• CRWLock

• CAutoRW

• CReadLockGuard

• CWriteLockGuard

• CInternalRWLock

• CSemaphore

• Working with File and Directories using CFile and CDir

• CDirEntry class

C++ Toolkit Book The CORELIB Module

8-6

• CFile class

• CDir class

• CMemoryFile class

• String APIs

• String Constants

• NStr Class

• UTF Strings

• PCase and PNocase

• Portable Time Class

• CTime Class Constructors

• Other CTime Methods

• Template Utilities

• Function Objects

• Template Functions

• Miscellaneous Types and Macros

• Miscellaneous Enumeration Types

• AutoPtr Class

• ITERATE macros

• Sequence Position Types

Demo Cases [src/app/sample/basic]
Test Cases [src/corelib/test]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/basic
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test

C++ Toolkit Book The CORELIB Module

8-7

Writing a Simple Application
This section discusses how to write a simple application using the CNcbiApplication and related
class. A conceptual understanding the uses of the CNcbiApplication and related classes is pre-
sented in the introductory chapter on the C++ Toolkit.

This section discusses the following topics:

• Basic classes of NCBI C++ toolkit

• Creating a simple application

• Inside the NCBI Application class

NCBI C++ Toolkit Application Framework Classes
The following five fundamental classes form the foundation of the C++ Toolkit:

• class CNcbiApplication

• class CNcbiArguments (see also CArgDescriptions, CArgs, ...)

• class CNcbiEnvironment

• class CNcbiRegistry

• class CNcbiDiag

Each of these classes are discussed in the following sections:

CNcbiApplication
CNcbiApplication is an abstract class used to define the basic functionality and behavior of an
NCBI application. Since this application class effectively supersedes the C-style main() function,
minimally, it must provide the same functionality, i.e.

• A mechanism to execute the actual application

• A data structure for holding program command-line arguments ("argv")

• A data structure for holding environment variables

In addition, the application class provides the same features previously implemented in the C
Toolkit, namely:

• Mechanisms for specifying where, when, and how errors should be reported

• Methods for reading, accessing, modifying, and writing information in the application's reg-
istry (configuration) file

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNcbiApplication.html

C++ Toolkit Book The CORELIB Module

8-8

• Methods to describe, and then automatically parse, validate and access program com-
mand-line arguments, and to generate the USAGE message

The mechanism to execute the application is provided by CNcbiApplication's member func-
tion Run() - which you must write your own implementation of. The Run() function will be auto-
matically invoked by CNcbiApplication::AppMain(), after it has initialized its CNcbiArguments,
CNcbiEnvironment, CNcbiRegistry, and CNcbiDiag data members.

CNcbiArguments
CNcbiArguments class provides a data structure for holding the application's command-line
arguments, along with methods for accessing and modifying these. Access to the argument val-
ues is implemented using the built-in [] operator. For example, the first argument in argv (follow-

ing the program name) can be retrieved using the CNcbiApplication::GetArguments() method:

string arg1_value = GetArguments()[1];

Here, GetArguments() returns the CNcbiArguments object, whose argument values can
then be retrieved using the [] operator. Four additional CNcbiArgument member functions sup-
port retrieval and modification of the program name (initially argv[0]). A helper class, described

in Processing Command Line Arguments, supports the generation of USAGE messages and the
imposition of constraints on the values of the input arguments.

In addition to the CNcbiArguments class, there are other related classes used for argument
processing. The CArgDescriptions and CArgDesc classes are used for describing unparsed
arguments; CArgs and CArgValue for parsed argument values; CArgException and
CArgHelpException for argument exceptions; and CArgAllow, CArgAllow_{Strings, ..., Inte-
gers, Doubles} for argument constraints. These classes are discussed in the section on Process-
ing Command Line Arguments.

When using C++ Toolkit on Mac OS you can specify command-line arguments in a separate
file with the name of your executable and ".args" extension. Each argument should be on a sepa-
rate line (see Table 1).

Table 1. Example of Command-line Arguments

Command-line parameters File Content

-gi "Integer" (GI id of the Seq-Entry to examine)
OPTIONAL ARGUMENTS: -h (Print this USAGE
message; ignore other arguments) -reconstruct
(Reconstruct title) -accession (Prepend accession) -
organism (Append organism name)

-gi 10200 -reconstruct -accession -organism

Please note: File must contain Macintosh-style line breaksNo extra spaces are allowed after argument ("-
accession" and not "-accession ")Arguments must be followed by an empty terminating line.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNcbiArguments.html

C++ Toolkit Book The CORELIB Module

8-9

CNcbiEnvironment
The CNcbiEnvironment class provides a data structure for storing, accessing, and modifying the
environment variables accessed by the C library routine getenv().

The following describes the public interface to the CNcbiEnvironment:

class CNcbiEnvironment
{
public:
 /// Constructor.
 CNcbiEnvironment(void);

 /// Constructor with the envp parameter.
 CNcbiEnvironment(const char* const* envp);

 /// Destructor.
 virtual ~CNcbiEnvironment(void);

 /// Reset environment.
 ///
 /// Delete all cached entries, load new ones from "envp" (if not NULL).
 void Reset(const char* const* envp = 0);

 /// Get environment value by name.
 ///
 /// If environmnent value is not cached then call "Load(name)" to load
 /// the environmnent value. The loaded name/value pair will then be
 /// cached, too, after the call to "Get()".
 const string& Get(const string& name) const;

};

For example, to retrieve the value of environment variable PATH:

string arg1_value = GetEnvironment().Get("PATH");

In this example, the GetEnvironment() is defined in the CNcbiApplication class and returns the
CNcbiEnvironment object for which the Get() method is called with the environment variable
PATH

To delete all of the cached entrues and reload new ones from the environment pointer(envp),
use the CNcbiEnvironment::Reset() method.

CNcbiRegistry
The CNcbiRegistry class is used to load, access, modify and store runtime information read from
a configuration file. Previously, these files were by convention named .*rc files on UNIX systems.

The convention for all platforms now is to name such files *.ini (where * is by default the applica-
tion name).

The name of configuration file is specified by argument conf of CNcbiApplication::AppMain()

(see Table 2).

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNcbiEnvironment.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiApplication&d=C

C++ Toolkit Book The CORELIB Module

8-10

Table 2. Location of Configuration Files

conf Where to look for the config file

empty [default] Compose config file name from the base application
name plus .ini. Also try to strip file extensions, e.g. for
the application named my_app.cgi.exe try subse-
quently: my_app.cgi.exe.ini, my_app.cgi.ini, my_app.
ini. Using these names, search in directories as
described in the "Otherwise" case for non-empty
conf (see below).

NULL Do not even try to load registry at all
non-empty If conf contains a path, then try to load from the config

file named conf (only and exactly!) If the path is not
fully qualified, and it starts from ../ or ./, then look for
the config file starting from the current working dir
Otherwise (only a basename, without path), the con-
fig file will be searched for in the following places (in
the order of preference): 1. current work directory 2.
directory defined by environment variable NCBI 3.
user home directory 4. program directory

On success, you can access the loaded configuration (registry) using method CNcbiApplica-
tion::GetConfig(). Application will throw an exception if the config.file is found, it is not empty, and
either cannot be opened or contains invalid entries. If conf is not NULL, and the config file can-

not not be found, then a warning will be posted to the application diagnostic.
Additional details on the CNcbiRegistry can be found in the section on The CNcbiRegistry

Class.

CNcbiDiag
The CNcbiDiag class implements much of the functionality of the NCBI C Toolkit error process-
ing mechanisms. Each instance of CNcbiDiag has a private buffer to handle a single message,
along with private severity level and post flags and their associated get/set methods. A
CNcbiDiag object has the look and feel of an output stream; its member functions and friends
include output operators >> and format manipulators. The default is to post errors to stderr,

with the action determined by the severity level of the message, however user can provide
another stream to post to, or create an arbitrary callback to do the job, or just ignore all diagnos-
tics. See also the sections on Diagnostic Streams and Message Posting.

Creating a Simple Application
This section discusses the following topics:

• UNIX Systems

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiApplication&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiApplication&d=C

C++ Toolkit Book The CORELIB Module

8-11

• MS Windows

• Discussion of the Sample Application

UNIX Systems
Using new_project.sh shell script, create a new project sample in the folder sample:

$NCBI/c++/scripts/new_project.sh sample app

This will create:

1. the project folder - sample,

2. the source file - sample.cpp,

3. the makefile - Makefile.sample_app.

Then build the project and run the application:
cd sample; make -f Makefile.sample_app; ./sample

MS Windows

1. In Microsoft Visual Studio create a new project/workspace: choose Win32 Console Appli-
cation; then supply a Project name (such as Sample) and select OK; then choose An
empty project and select Finish.

2. Copy the sample source file into the project directory, rename it, then add to the project.

3. Modify the project settings:

• Enable Run-time type information (in C/C++ - C++ language),

• Disable using precompiled headers (in C/C++ - Precompiled headers),

• Add additional include directory (in C/C++ - Preprocessor). Here, at NCBI, it could
be \\Dizzy\public\cxx\include, that is, the "root" of all includes,

• Add additional library path (Link-Input). Here, at NCBI it could be \\Dizzy\public\cxx
\Debug. Please note, this library path is configuration-dependent, that is it must be
different for each configuration you are going to build the project in,

• Remove all standard libraries in Link-Input-Object/library modules,

• Add xncbi.lib NCBI library to the project.

4. Build the project and run the application.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/basic/basic_sample.cpp

C++ Toolkit Book The CORELIB Module

8-12

Discussion of the Sample Application
In the sample application above:

1. There is an application class derived from CNcbiApplication, which overrides purely
virtual function Run(), and also initialization (Init()) and cleanup (Exit()) functions:

class CSampleApplication : public CNcbiApplication
{
private:
 virtual void Init(void);
 virtual int Run(void);
 virtual void Exit(void);
};

2. Program's main function creates an object of the application class and calls its AppMain
() function:

int main(int argc, const char* argv[])
{
 CSampleApplication theApp;
 // Execute main application function
 theApp.AppMain(argc, argv, 0, eDS_Default, 0);
}

3. Application's initialization function creates argument descriptions object, which describes
the expected command line arguments and the usage context:

void CSampleApplication::Init(void)
{
 // Create command-line argument descriptions
 auto_ptr<CArgDescriptions> arg_desc(new CArgDescriptions);
 // Specify USAGE context
 arg_desc->SetUsageContext(GetArguments().GetProgramBasename(), "CArgDescrip-
tions demo program");
 ...
 // Setup arg.descriptions for this application SetupArgDescriptions(arg_desc.
release());
}

4. Application's Run() function prints those arguments into the standard output stream, or in
a file.

More realistic examples of applications, which utilize NCBI C++ toolkit can be found here.

Inside the NCBI Application class
Here is a somewhat simplified view of the application's class definition:

class CNcbiApplication
{
public:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/basic/basic_sample.cpp

C++ Toolkit Book The CORELIB Module

8-13

 /// Main function (entry point) for the NCBI application.
 ///
 /// You can specify where to write the diagnostics to (EAppDiagStream),
 /// and where to get the configuration file (LoadConfig()) to load
 /// to the application registry (accessible via GetConfig()).
 ///
 /// Throw exception if:
 /// - not-only instance
 /// - cannot load explicitly specified config.file
 /// - SetupDiag() throws an exception
 ///
 /// If application name is not specified a default of "ncbi" is used.
 /// Certain flags such as -logfile, -conffile and -version are special so
 /// AppMain() processes them separately.
 /// @return
 /// Exit code from Run(). Can also return non-zero value if application
 /// threw an exception.
 /// @sa
 /// Init(), Run(), Exit()
 int AppMain(int argc, const char **argv, const char **envp,
 EAppDiagStream diag, const char* config, const string& name);

 /// Initialize the application.
 ///
 /// The default behavior of this is "do nothing". If you have special
 /// initialization logic that needs to be peformed, then you must override
 /// this method with your own logic.
 virtual void Init(void);

 /// Run the application.
 ///
 /// It is defined as a pure virtual method -- so you must(!) supply the
 /// Run() method to implement the application-specific logic.
 /// @return
 /// Exit code.
 virtual int Run(void) = 0;

 /// Cleanup on application exit.
 ///
 /// Perform cleanup before exiting. The default behavior of this is
 /// "do nothing". If you have special cleanup logic that needs to be
 /// performed, then you must override this method with your own logic.
 virtual void Exit(void);

 /// Get the application's cached unprocessed command-line arguments.
 const CNcbiArguments& GetArguments(void) const;

 /// Get parsed command line arguments.
 ///
 /// Get command line arguments parsed according to the arg descriptions
 /// set by SetArgDescriptions(). Throw exception if no descriptions
 /// have been set.
 /// @return

C++ Toolkit Book The CORELIB Module

8-14

 /// The CArgs object containing parsed cmd.-line arguments.
 /// @sa
 /// SetArgDescriptions().
 const CArgs& GetArgs(void) const;

 /// Get the application's cached environment.
 const CNcbiEnvironment& GetEnvironment(void) const;

 /// Get the application's cached configuration parameters.
 const CNcbiRegistry& GetConfig(void) const;

 /// Flush the in-memory diagnostic stream (for "eDS_ToMemory" case only).
 ///
 /// In case of "eDS_ToMemory", the diagnostics is stored in
 /// the internal application memory buffer ("m_DiagStream").
 /// Call this function to dump all the diagnostics to stream "os" and
 /// purge the buffer.
 /// @param os
 /// Output stream to dump diagnostics to. If it is NULL, then
 /// nothing will be written to it (but the buffer will still be purged).
 /// @param close_diag
 /// If "close_diag" is TRUE, then also destroy "m_DiagStream".
 /// @return
 /// Total number of bytes actually written to "os".
 SIZE_TYPE FlushDiag(CNcbiOstream* os, bool close_diag = false);

 /// Get the application's "display" name.
 ///
 /// Get name of this application, suitable for displaying
 /// or for using as the base name for other files.
 /// Will be the 'name' argument of AppMain if given.
 /// Otherwise will be taken from the actual name of the application file
 /// or argv[0].
 string GetProgramDisplayName(void) const;

protected:

 /// Setup application specific diagnostic stream.
 ///
 /// Called from SetupDiag when it is passed the eDS_AppSpecific parameter.
 /// Currently, this calls SetupDiag(eDS_ToStderr) to setup diagonistic
 /// stream to the std error channel.
 /// @return
 /// TRUE if successful, FALSE otherwise.
 virtual bool SetupDiag_AppSpecific(void);

 /// Load configuration settings from the configuration file to
 /// the registry.
 ///
 /// Load (add) registry settings from the configuration file specified as
 /// the "conf" arg passed to AppMain(). The "conf" argument has the
 /// following special meanings:
 /// - NULL -- dont even try to load registry from any file at all;

C++ Toolkit Book The CORELIB Module

8-15

 /// - non-empty -- if "conf" contains a path, then try to load from the
 /// conf.file of name "conf" (only!). Else - see NOTE.
 /// TIP: if the path is not fully qualified then:
 /// if it starts from "../" or "./" -- look starting
 /// from the current working dir.
 /// - empty -- compose conf.file name from the application name
 /// plus ".ini". If it does not match an existing
 /// file, then try to strip file extensions, e.g. for
 /// "my_app.cgi.exe" -- try subsequently:
 /// "my_app.cgi.exe.ini", "my_app.cgi.ini", "my_app.ini".
 ///
 /// NOTE:
 /// If "conf" arg is empty or non-empty, but without path, then config file
 /// will be sought for in the following order:
 /// - in the current work directory;
 /// - in the dir defined by environment variable "NCBI";
 /// - in the user home directory;
 /// - in the program dir.
 ///
 /// Throw an exception if "conf" is non-empty, and cannot open file.
 /// Throw an exception if file exists, but contains invalid entries.
 /// @param reg
 /// The loaded registry is returned via the reg parameter.
 /// @param conf
 /// The configuration file to loaded the registry entries from.
 /// @return
 /// TRUE only if the file was non-NULL, found and successfully read.
 virtual bool LoadConfig(CNcbiRegistry& reg, const string* conf);

};

The AppMain() function is also inherited from the parent class. Although this function accepts
up to six arguments, this example passes only the first two, with missing values supplied by
defaults. The remaining four arguments specify:

• (#3) a NULL-terminated array of '\0'-terminated character strings from which the environ-
ment variables can be read

• (#4) how to setup a diagnostic stream for message posting

• (#5) the name of a .ini configuration file (see above for its default location)

• (#6) a program name (to be used in lieu of argv[0])

In order to avoid the display of a warning message when no configuration file is present, the .
ini file should be explicitly specified as NULL (zero), as in:

AppMain (argc, argv, envp, diag_stream, 0, progname);

C++ Toolkit Book The CORELIB Module

8-16

AppMain() begins by resetting the internal data members with the actual values provided by
the arguments of main(). Once these internal data structures have been loaded, AppMain() calls
the virtual functions Init(), Run(), and Exit() in succession to execute the application.

The Init() and Exit()virtual functions are provided as places for developers to add their own
methods for specific applications. As this example does not require any additional initialization/
termination, these two functions are empty. The Run() method prints out the message defined in
justApp.cpp and exits.

The FlushDiag() method is useful if the diagnostic stream has been set to eDS_toMemory
which means that diagnostic messages are stored in an internal application memory buffer. You
can then call FlushDiag() to output the stored messages on the specified output stream. The
method will also return the number of bytes written to the output stream. If you specify NULL for
the output stream, the memory buffers containing the diagnostic messages will be purged but not
deallocated, and nothing will be written to the output. If the close_diag parameter to FlushDiag()
is set to TRUE, then the memory buffers will be deallocated (and purged, of course).

The GetProgramDisplayName() method simply returns the name of the running application,
suitable for displaying in reports or for using as the base name for building other related file
names.

The protected virtual function SetupDiag_AppSpecific() can be redefined to setup error
posting specific for your application. SetupDiag_AppSpecific() will be called inside AppMain()
by default if the error posting has not been setup already. Also, if you pass diag = eDS_AppSpe-
cific to AppMain(), then SetupDiag_AppSpecific() will be called for sure, regardless of the error
posting setup that was active before the AppMain() call.

The protected virtual function LoadConfig()reads the program's .ini configuration file to load
the application's parameters into the registry. The default implementation of LoadConfig()
expects to find a configuration file named progname.ini, and will generate a warning to the user if
no such file is found.

The NCBI application (application built by deriving from CNcbiApplication) throws the excep-
tion the CAppException when any of the following conditions are true:

• Command line argument description cannot be found and argument descriptions have not
been disabled (via call to protected method DisableArgDescription().

• Application diagnostic stream setup has failed.

• Registry data failed to load from a specfied configuration file.

• An attempt is made to create a second instance of the CNcbiApplication -- at any time only one
instance can be running.

• The specified configuration file cannot be opened.

As shown above, source files which utilize the CNcbiApplication class must #include the
header file where that class is defined, corelib/ncbiapp.hpp, in the include/ directory. This header
file in turn includes corelib/ncbistd.hpp, which should always be #include'd.

C++ Toolkit Book The CORELIB Module

8-17

Processing Command Line Arguments
This section discusses the classes that are used to process command line arguments. A concep-
tual overview of these classes is covered in an introductory section. This section discusses these
classes in details and gives sample programs that use these classes.

This section discusses the following topics:

• Capabilities of the Command Line API

• The Relationships Between the CArgDescriptions, CArgs, and CArgValue classes

• Command Line Syntax

• The CArgDescriptions class

• The CArgs class: A container class for CArgValue objects

• CArgValue class: The Internal Representation of Argument Values

• Code Examples

Capabilities of the Command Line API
The set of classes for argument processing implement automated command line parsing. Specifi-
cally, these classes allow the developer to:

• specify attributes of expected arguments, such as name, synopsis, comment, data type,
etc.,

• validate values of the arguments passed to the program against these specifications,

• validate the number of positional arguments in the command line,

• generate a USAGE message based on the argument descriptions (NOTE:-h flag to print
the USAGE is defined by default),

• access the input argument values specifically type-cast according to their description.

Normally, CArgDescriptions object that contains the argument description is required and
should be created in application's Init() function before any other initialization. Otherwise CNcbi-
Application creates a default one, which allows any program which utilizes NCBI C++ toolkit to
provide some standard command line options, namely:

• to obtain a general description of the program as well as description of all available com-
mand line parameters (-h flag),

• to redirect the program's diagnostic messages into a specified file (-logfile key),

• to read the program's configuration data from a specified file (-conffile key).

C++ Toolkit Book The CORELIB Module

8-18

See Table 3 for the standard command line options for the default instance of CArgDescriptions.

Table 3. Standard command line options for the default instance of CArgDescriptions

Flag Description Example

-h Print description of the application's
command line parameters.

theapp -h

-logfile Redirect program's log into the speci-
fied file

theapp -logfile theapp_log

-conffile Read the program's configuration
data from the specified file

theapp -conffile theapp_cfg

To avoid creation of a default CArgDescriptions object which may not be needed for
instance if the standard flags described in Table 3 are not used, one should call CNcbiApplica-
tion::DisableArgDescriptions() function from an application object constructor.

Also, it is possible to use CNcbiApplication::HideStdArgs(THideStdArgs hide_mask)
method to hide description of the standard arguments (-h, -logfile, -conffile) in the USAGE mes-
sage. Please note, this only hides the description of these flags - it is still possible to use them.

The Relationships Between the CArgDescriptions, CArgs, and CArgValue classes
The CArgDescriptions class provides an interface to describe the data type and attributes of
command-line arguments, via a set of AddXxx() methods. Additional constraints on the argument
values can be imposed using the SetConstraint() method. The CreateArgs() method is passed
the values of all command line arguments at runtime. This method verifies their overall syntactic
structure and matches their values against the stored descriptions. If the arguments are parsed
successfully, a new CArgs object is returned by CreateArgs().

The resulting CArgs object will contain parsed, verified and ready-to-use argument values
which are stored as CArgValue's. The value of a particular argument can be accessed using the
argument's name (as specified in the CArgDescriptions object), and the returned CArgValue
object can then be safely type-cast to a correct C++ type (int, string, stream, etc.) because the
argument types have been verified. These class relations and methods can be summarized
schematically as shown in Figure 1.

C++ Toolkit Book The CORELIB Module

8-19

Figure 1: Argument Processing Class Relations

The last statement in this example implicitly references a CArgValue object, in the value
returned when the [] operator is applied to myArgs. The method CArgValue::AsDouble() is then

applied to this object to retrieve a double.

Command Line Syntax
This API can describe and work with command line arguments that fit the following profile:

 // progname
 // {arg_key, arg_key_opt, arg_key_dflt, arg_flag} [--]
 // {arg_pos} {arg_pos_opt, arg_pos_dflt}
 // {arg_extra} {arg_extra_opt}
 //
 // where:
 // arg_key := -<key> <value> -- (mandatory)
 // arg_key_opt := [-<key> <value>] -- (optional, without default value)
 // arg_key_dflt := [-<key> <value>] -- (optional, with default value)
 // arg_flag := -<flag> -- (always optional)
 // -- := optional delimiter to indicate the beginning of pos. args
 // arg_pos := <value> -- (mandatory)
 // arg_pos_opt := [<value>] -- (optional, without default value)
 // arg_pos_dflt := [<value>] -- (optional, with default value)
 // arg_extra := <value> -- (dep. on the constraint policy)
 // arg_extra_opt := [<value>] -- (dep. on the constraint policy)
 //
 // and:
 // <key> must be followed by <value>
 // <flag> and <key> are case-sensitive, and they can contain
 // only alphanumeric characters
 // <value> is an arbitrary string (additional constraints can
 // be applied in the argument description, see "EType")
 //

C++ Toolkit Book The CORELIB Module

8-20

 // {arg_pos***} and {arg_extra***} -- position-dependent arguments, with
 // no tag preceding them.
 // {arg_pos***} -- have individual names and descriptions (see methods
 // AddPositional***).
 // {arg_extra***} have one description for all (see method AddExtra).
 // User can apply constraints on the number of mandatory and optional
 // {arg_extra***} arguments.

Examples:

MyProgram1 -reverse -depth 5 -name Lisa -log foo.log 1.c 2.c 3.c
MyProgram2 -i foo.txt -o foo.html -color red
MyProgram3 -a -quiet -pattern 'Error:' bar.txt

The CArgDescriptions (%20) class
The CArgDescriptions contains a description of unparsed arguments -- that is, user specified
descriptions that are then used to parse the arguments. CArgDescriptions is used as a con-
tainer to store the command-line argument descriptions. The argument descriptions are used for
parsing and verifying actual command-line arguments.

The following is a list of topics discussed in this section:

• The CArgDescriptions Constructor

• Describing Argument Attributes

• Argument Types

• Restricting the Input Argument Values

• Implementing User-Defined Restrictions Using the CArgAllow class

• Using CArgDescriptions in Applications

• Generating a USAGE Message

The CArgDescriptions Constructor
The constructor for CArgDescriptions excepts a boolean argument, auto_help, set to TRUE by
default.

CArgDescriptions(bool auto_help = true);
If "auto_help" is passed TRUE, then a special flag "-h" will be added to the list of accepted

arguments, and passing "-h" in the command line will printout USAGE and ignore all other passed
arguments.

Describing Argument Attributes
CNcbiArguments contain many methods named, AddXxx(). The "Xxx" refer to the types of
arguments such as mandatory key (named) arguments, optional key arguments, positional argu-
ments, flag arguments, etc. For example, the AddKey() method refers to adding a description for
a mandatory key argument. .

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgDescriptions.html

C++ Toolkit Book The CORELIB Module

8-21

The methods AddXxx() are passed the following argument attributes: name The string that
will be used to identify the variable, as in: CArgs[name]. For all tagged variables in a command

line, name is also the key (or flag) to be used there, as in: "-name value" (or "-name"). synopsis
(for key_*** arguments only)The automatically generated USAGE message includes argument
description in the format: -name [synopsis] <type, constraint> comment comment To be displayed
in the USAGE message, as described above. value type One of the scalar values defined in the
enumeration, which defines the type of the argument. default (for key_dflt and pos_dflt argu-
ments only) A default value to be used if the argument is not included in the command line - only
available for optional program arguments. flags The flags argument, which occurs optionally in all
but the AddFlag() method, has meaning only when EType is eInputFile or eOutputFile,

and restricts the mode in which the file should be opened.

Argument Types
The CArgDescriptions class allows to register command-line arguments that fit one of the follow-
ing pattern types:

Mandatory named arguments:-<key> <value> (example: -age 31) Position-independent
arguments that must be present in the command line. AddKey(key, synopsis, comment,
value_type, flags)

Optional named arguments:[-<key> <value>] (example: -name Lisa) Position-independent
arguments that are optional. AddOptionalKey(key, synopsis, comment, value_type, flags) A
default value can be specified in the argument's description to cover those cases where the
argument does not occur in the command line. AddDefaultKey(key, synopsis, comment,
value_type, default_value, flags)

Optional named flags:[-<flag>] (example:) Position-independent boolean (without value)
arguments. These arguments are always optional. AddFlag(flag, comment, set_value)

Mandatory named positional arguments:<value> (example: 12 Feb) These are position-
dependent arguments (of any type), which are read using a value only. They do however, have
names stored with their descriptions, which they are associated with in an order-dependent fash-
ion. Specifically, the order in which untagged argument descriptions are added to the CArgDe-
scriptions object using AddPositional() defines the order in which these arguments should
appear in the command line. AddPositional(key, comment, value_type, flags)

Optional named positional arguments:[value] (example: foo.txt bar) Position-dependent
arguments that are optional. They always go after the mandatory positional arguments. The order
in which untagged argument descriptions are added to the CArgDescriptions object using Add
[Optional|Default]Positional() defines the order in which these arguments should appear in the
command line. AddOptionalPositional(key, comment, value_type, flags)AddDefaultPosi-
tional(key, comment, value_type, default_value, flags)

Unnamed positional arguments (all of the same type: <value1> | [valueN] (example: foo.c
bar.c xxx.c) These are also position-dependent arguments that are read using a value only. They
are expected to appear at the very end of the command line, after all named arguments. Unlike
the previous argument type however, these arguments do not have individual named descrip-

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddKey
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddKey
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddKey
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddKey
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddKey
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddPlain
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddPlain
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddPlain
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddPlain

C++ Toolkit Book The CORELIB Module

8-22

tions, but share a single "unnamed" description. You can specify how many mandatory and how
many optional arguments to expect using n_mandatory and n_optional parameters: AddEx-

tra(n_mandatory, n_optional, comment, type, flags)
Any of the registered descriptions can be tested for existence and/or deleted using the follow-

ing CArgDescriptionsmethods:

bool Exist(const string& name) const;
void Delete(const string& name);

These methods can also be applied to the unnamed positional arguments (as a group), using:
Exist(kEmptyStr) and Delete(kEmptyStr).

Restricting the Input Argument Values
Although each argument's input value is initially loaded as a simple character string, the argu-
ment's specified type implies a restricted set of possible values. For example, if the type is eIn-
teger, then any integer value is acceptable, but floating point and non-numerical values are not.

The EType enumeration quantifies the allowed types and is defined as:

 /// Available argument types.
 enum EType {
 eString = 0, ///< An arbitrary string
 eBoolean, ///< {'true', 't', 'false', 'f'}, case-insensitive
 eInteger, ///< Convertible into an integer number (int)
 eDouble, ///< Convertible into a floating point number (dou-
ble)
 eInputFile, ///< Name of file (must exist and be readable)
 eOutputFile, ///< Name of file (must be writeable)

 k_EType_Size ///< For internal use only
 };

Implementing User-Defined Restrictions Using the CArgAllow class
It may be neccessary to specify a restricted range for argument values. For example, an integer
argument that has a range between 5 and 10. Further restrictions on the allowed values can be
specified using the CArgDescriptions::SetConstraint() method with the CArgAllow class. For
example:

auto_ptr<CArgDescriptions> args(new CArgDescriptions);
// add descriptions for "firstint" and "nextint" using AddXxx(...)
...
CArgAllow* constraint = new CArgAllow_Integers(5,10);
args->SetConstraint("firstInt", constraint);
args->SetConstraint("nextInt", constraint);

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddExtra
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddExtra
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CArgDescriptions
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow.html

C++ Toolkit Book The CORELIB Module

8-23

This specifies that the arguments named "firstInt" and "nextInt" must both be in the range [5,
10].

The CArgAllow_Integers class is derived from the abstractCArgAllow class. The construc-
tor takes the two integer arguments as lower and upper bounds for allowed values. Similarly, the
CArgAllow_Doubles class can be used to specify a range of allowed floating point values. For
both classes, the order of the numeric arguments does not matter, as the constructors will use
min/max comparisons to generate a valid range.

A third class derived from the CArgAllow class is the CArgAllow_Strings class. In this case,
the set of allowed values can not be specified by a range, but the following construct can be used
to enumerate all eligible string values:

CArgAllow* constraint = (new CArgAllow_Strings())->
 Allow("this)->Allow("that")->Allow("etc");
args.SetConstraint("someString", constraint);

Here, the constructor takes no arguments, and the Allow() method returns this. Thus, a list

of allowed strings can be specified by daisy-chaining a set of calls to Allow(). A bit unusual yet
terser notation can also be used by engaging the comma operator, as in:

args.SetConstraint("someString",
 &(*new CArgAllow_Strings, "this", "that", "etc"));

There are two other pre-defined constraint classes:CArgAllow_Symbols and CArgAl-
low_String. If the value provided on the command line is not in the allowed set of values speci-

fied for that argument, then an exception will be thrown. This exception can be caught and
handled in the usual manner, as described in the discussion of Generating a USAGE message.

Using CArgDescriptions in Applications
The description of program arguments should be provided in application's Init() function before
any other initialization. A good idea is also to specify the program's description here:

auto_ptr<CArgDescriptions> arg_desc(new CArgDescriptions);
arg_desc->SetUsageContext(GetArguments().GetProgramBasename(),
 "program's description here");
// Define arguments, if any
...
SetupArgDescriptions(arg_desc.release());

The SetUsageContext() method is used to define the name of the program and its descrip-
tion, which is to be displayed in the USAGE message. As long as an applications's initialization is
completed and there is still no argument description, CNcbiApplication class provides a "default"
one. This behavior can be overridden by calling DisableArgDescriptions() method of CNcbiAp-
pliation.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_Integers.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_Doubles.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_Strings.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_Symbols.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_String.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgAllow_String.html

C++ Toolkit Book The CORELIB Module

8-24

Generating a USAGE Message
One of the functions of CArgDescriptions object is to generate a USAGE message automatically
(this gives yet another reason to define one). Once such object is defined, there is nothing else to
worry about - CNcbiApplication will do the job for you: SetupArgDescriptions() method
includes parsing the command line and matching arguments against their descriptions. Should an
error occurs, - e.g. a mandatory argument is missing, - the program prints a message explaining
what was wrong and terminates. The output in this case might look like this:

USAGE
 myApp -h -k MandatoryKey [optarg]

DESCRIPTION
 myApp test program

REQUIRED ARGUMENTS
-k <String>
 This is a mandatory alpha-num key argument

OPTIONAL ARGUMENTS
-h
 Print this USAGE message; ignore other arguments
optarg <File_Out>
 This is an optional named positional argument without default value
==
"E:\cxx\src\corelib\ncbiapp.cpp", line 437: Error:
NCBI C++ Exception:
 "E:\cxx\src\corelib\ncbiargs.cpp", line 621: Error: (CArgException::eNoArg) Argument
"k". Required argument missing: `String'
 "E:\cxx\src\corelib\ncbiapp.cpp", line 383: Error: (CArgException::eNoArg) Applica-
tion's initialization failed

The message shows a description of the program, and a summary of each argument. In this
example, the input file argument's description was defined as:

arg_desc->AddKey("k", "MandatoryKey",
 "This is a mandatory alpha-num key argument",
 CArgDescriptions::eString);

The information generated for each argument is displayed in the format:

me [synopsis] <type [, constraint] > comment [default =]

C++ Toolkit Book The CORELIB Module

8-25

The CArgs (%20) class: A container class for CArgValue (*) objects
The CArgs class provides a data structure where the parsed arguments' values can be stored,
and includes access routines in its public interface. Argument values are obtained from the
unprocessed command-line arguments via the CNcbiArguments class and then verified and
processed according to the argument descriptions defined by user in CArgDescriptions. The
following describes the public interface methods in CArgs:

class CArgs
{
public:
 /// Constructor.
 CArgs(void);

 /// Destructor.
 ~CArgs(void);

 /// Check existence of argument description.
 ///
 /// Return TRUE if arg 'name' was described in the parent CArgDescriptions.
 bool Exist(const string& name) const;

 /// Get value of argument by name.
 ///
 /// Throw an exception if such argument does not exist.
 /// @sa
 /// Exist() above.
 const CArgValue& operator[] (const string& name) const;

 /// Get the number of unnamed positional (a.k.a. extra) args.
 size_t GetNExtra(void) const { return m_nExtra; }

 /// Return N-th extra arg value, N = 1 to GetNExtra().
 const CArgValue& operator[] (size_t idx) const;

 /// Print (append) all arguments to the string 'str' and return 'str'.
 string& Print(string& str) const;

 /// Add new argument name and value.
 ///
 /// Throw an exception if the 'name' is not an empty string, and if
 /// there is an argument with this name already.
 ///
 /// HINT: Use empty 'name' to add extra (unnamed) args, and they will be
 /// automagically assigned with the virtual names: '#1', '#2', '#3', etc.
 void Add(CArgValue* arg);

 /// Check if there are no arguments in this container.
 bool IsEmpty(void) const;

};

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgs.html

C++ Toolkit Book The CORELIB Module

8-26

The CArgs object is created by executing the CArgDescriptions::CreateArgs() method.
What happems when the CArgDescriptions::CreateArgs() method is executed is that the com-
mand line's arguments are validated against the registered descriptions, and a CArgs object is
created. Each argument value is internally represented as a CArgValue object, and is added to a
container managed by the CArgs object.

All named arguments can be accessed using the [] operator, as in: myCArgs["f"], where "f" is
the name registered for that argument. There are two ways to access the N-th unnamed posi-
tional argument: myCArgs["#N"] and myCArgs[N], where 1 <= N <= GetNExtra().

CArgValue (%20) class: The Internal Representation of Argument Values
The internal representation of an argument value - as it is stored and retrieved from its CArgs
container - is an instance of a CArgValue. The primary purpose of this class is to provide type-
validated loading through a set of AsXxx() methods where "Xxx" is the argument type such as
"Integer", "Boolean", "Double" etc. The following describes the public interface methods in
CArgValue:

class CArgValue : public CObject
{
public:
 /// Get argument name.
 const string& GetName(void) const { return m_Name; }

 /// Check if argument holds a value.
 ///
 /// Argument does not hold value if it was described as optional argument
 /// without default value, and if it was not passed a value in the command
 /// line. On attempt to retrieve the value from such "no-value" argument,
 /// exception will be thrown.
 virtual bool HasValue(void) const = 0;
 operator bool (void) const { return HasValue(); }
 bool operator!(void) const { return !HasValue(); }

 /// Get the argument's string value.
 ///
 /// If it is a value of a flag argument, then return either "true"
 /// or "false".
 /// @sa
 /// AsInteger(), AsDouble(), AsBoolean()
 virtual const string& AsString(void) const = 0;

 /// Get the argument's integer value.
 ///
 /// If you request a wrong value type, such as a call to "AsInteger()"
 /// for a "boolean" argument, an exception is thrown.
 /// @sa
 /// AsString(), AsDouble, AsBoolean()
 virtual int AsInteger(void) const = 0;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CArgValue.html

C++ Toolkit Book The CORELIB Module

8-27

 /// Get the argument's double value.
 ///
 /// If you request a wrong value type, such as a call to "AsDouble()"
 /// for a "boolean" argument, an exception is thrown.
 /// @sa
 /// AsString(), AsInteger, AsBoolean()
 virtual double AsDouble (void) const = 0;

 /// Get the argument's boolean value.
 ///
 /// If you request a wrong value type, such as a call to "AsBoolean()"
 /// for a "integer" argument, an exception is thrown.
 /// @sa
 /// AsString(), AsInteger, AsDouble()
 virtual bool AsBoolean(void) const = 0;

 /// Get the argument as an input file stream.
 virtual CNcbiIstream& AsInputFile (void) const = 0;

 /// Get the argument as an output file stream.
 virtual CNcbiOstream& AsOutputFile(void) const = 0;

 /// Close the file.
 virtual void CloseFile (void) const = 0;

};

Each of these AsXxx() methods will access the string storing the requested argument's
value, and attempt to convert that string to the specified type, using for example, functions such
as atoi() or atof(). Thus, the following construct can be used to obtain the value of a floating point
argument named "f":

float f = args["f"].AsDouble();

An exception will be thrown with an appropriate error message, if:

• the conversion fails, or

• "f" was described as an optional key or positional argument without default value (i.e. using
AddOptional***() method), and it was not defined in the command line. Note that you can
check for this case using the CArgValue::HasValue() method.

Code Examples
A simple application program, test_ncbiargs_sample.cpp demonstrates the usage of these
classes for argument processing. See also test_ncbiargs.cpp (especially main(), s_InitTest0()
and s_RunTest0() there), and asn2asn.cpp for more examples.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp

C++ Toolkit Book The CORELIB Module

8-28

Namespace, Name Concatenation and Compiler Specific Macros
The ncbistl.hpp provides a number of macros on namespace usage, name concatenation and
macros for handling compiler specific behavior.

These topics are discussed in greater detail in the following subsections

• NCBI Namespace

• Other Name Space Macros

• Name Concatenation

• Compiler Specific Macros

NCBI Namespace
All new NCBI classes must be in the ncbi:: namespace to avoid naming conflicts with other

libraries or code. Rather than enclose all newly defined code in the following it is, from a stylistic
point of view, better to use specially defined macros such as BEGIN_NCBI_SCOPE,

END_NCBI_SCOPE, USING_NCBI_SCOPE:

namespace ncbi {
 // Indented code etc.

}

The use of BEGIN_NCBI_SCOPE, END_NCBI_SCOPE, USING_NCBI_SCOPE is discussed in

use of the NCBI name scope.

Other Name Space Macros
The BEGIN_NCBI_SCOPE, END_NCBI_SCOPE, USING_NCBI_SCOPE macros in turn use the

more general purpose BEGIN_SCOPE(ns), END_SCOPE(ns), USING_SCOPE(ns) macros,

where the macro parameter ns is the namespace being defined. All NCBI related code should be

in the ncbi:: namespace so the BEGIN_NCBI_SCOPE, END_NCBI_SCOPE,

USING_NCBI_SCOPE should be adequate for new NCBI code. However, in those rare circum-

stances, if you need to define a new name scope, you can directly use the BEGIN_SCOPE(ns),

END_SCOPE(ns), USING_SCOPE(ns) macros.

Name Concatenation
The macros NCBI_NAME2 and NCBI_NAME3 define concatenation of two and three names

respectively. These are used to build names for program generated class, struct, or method
names.

Compiler Specific Macros
To cater to the idiosyncracies of compilers that have non-standard behavior, certain macros are
defined to normalize their behavior.

C++ Toolkit Book The CORELIB Module

8-29

The BREAK(it) macro advances the iterator to end of the loop and then breaks out of loop

for the Sun WorkShop compiler with version less than 5.3. This is done because this compiler
fails to call destructors for objects created in for-loop initializers. This macro prevents trouble with
iterators that contain CRefs by advancing them to the end using a while-loop, thus avoiding the
"deletion of referenced CObject" errors. For other compilers BREAK(it) is defined as the key-

word break.

The ICC compiler may fail to generate code preceded by template<>. So use the macro

EMPTY_TEMPLATE instead which expands to an empty string for the ICC compiler and to tem-
plate<> for all other compilers.

For MSVC v6.0, the for keyword is defined as a macro to overcome a problem with for-loops

in the compiler. The local variables in a for-loop initalization are visible outside the loop:

for (int i; i < 10; ++i) {
 // scope of i
}

// i should not be visible, but is visible in MSVC 6.0

Another macro called NCBI_EAT_SEMICOLON is used in creating new names which can

allow a tailing semicolon without producing a compiler warning in some compilers.

Using the CNcbiRegistry Class
This section provides reference information on the use of the CNcbiRegistry class. For an
overview of these classes refer to the introductory chapter.

The following topics are discussed in this section:

• Working with the Registry class: CNcbiRegistry

• Syntax of the Registry Configuration File

• Search Order for Initialization (*.ini) Files

• Setting Persistency and Modifiability of Registry Parameters Using CNcbiRegistry::EFlags

• Main Methods of CNcbiRegistry

• Additional Registry Methods

Working with the Registry class: CNcbiRegistry
The CNcbiRegistry class is used to access, modify and store runtime information read from a
configuration file. The registry classes can be used to perform operations such as reading and
parsing configuration files, searching, and editing the retrieved configuration information, and writ-
ing information back to configuration file.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNcbiRegistry.html

C++ Toolkit Book The CORELIB Module

8-30

If you are programming in the standard C++ Toolkit framework, using CNcbiApplication
class, you should definitely read the rules on where the application is looking for the configuration
file, and how you can access the loaded application-wide coniguration (registry) from your code.
This is described in the earlier discussion on the CNcbiRegistry class.

Syntax of the Registry Configuration File
The configuration file is composed of section headers and "name=value" strings, which occur
within the named sections. It is also possible to include comments in the file, which are indicated
by a new line with a leading semi-colon. An example configuration file is shown below.

An Example Configuration File

Registry file comment (begin of file)
MyProgram.ini

; parameters for section1
[section1]
name1 = value1 and value1.2
n-2.3 = " this value has two spaces at its very beginning and at the
end "
name3 = this is a multi\
line value
name4 = this is a single line ended by back slash\\
name5 = all backslashes and \
new lines must be \\escaped\\...

[section2.9-bis]
; This is a comment...
name2 = value2

All comments and empty lines are ignored by the registry file parser. Line continuations, as
usual, are indicated with a backslash escape. More generally, backslashes are processed as:

• [backslash] + [backslash] -- converted into a single [backslash]

• [backslash] + [space(s)] + [EndOfLine] -- converted to an [EndOfLine]

• [backslash] + ["] -- converted into a ["]

Character strings with embedded spaces do not need to be quoted, and an unescaped dou-
ble quote at the very beginning or end of a value is ignored. All other combinations with [back-
slash] and ["] are invalid.

The following restrictions apply to the section and name identifiers occurring in a registry file:

• the string must contain only: [a-z], [A-Z], [0-9], [_.-] characters

C++ Toolkit Book The CORELIB Module

8-31

• the interpretation of the string is not case-sensitive, e.g. PATH == path == PaTh

• all leading and trailing spaces will be truncated

Search Order for Initialization (*.ini) Files
On Unix platforms if an application dir1/app1 is a symlink to dir2/app2, the search order for initial-
ization files (*.ini files) will be as shown below:

1. ./app1.ini

2. $NCBI/app1.ini

3. ~/app1.ini

4. dir1/app1.ini

5. dir2/app1.ini

6. ./app2.ini

7. $NCBI/app2.ini

8. ~/app2.ini

9. dir1/app2.ini

10. dir2/app2.ini

Setting Persistency and Modifiability of Registry Parameters Using
CNcbiRegistry::EFlags

In addition to the constructor, which initializes the registry in memory and loads parameters from
a file, the CNcbiRegistry class provides methods for saving the registry (as a new configuration
file), and reading in additonal parameters from a secondary file(s). Each "name=value" pair stored
in the registry has three attributes, specifying whether or not that value is:

• persistent, meaning the value will be written to a file when the registry is saved

• overridable meaning the value can be overridden by a new value with the same name

• truncatable meaning that leading and trailing blanks can be truncated from the value

By default, all of the configuration's parameters are persistent, overridable, and truncatable.
The EFlags enumeration that quantifies these attributes, and the related typedefTFlags, are
defined as:

 /// Registry parameter settings.
 ///

C++ Toolkit Book The CORELIB Module

8-32

 /// A Registry parameter can be either transient or persistent,
 /// overrideable or not overridable, truncatable or not truncatable.
 enum EFlags {
 eTransient = 0x1, ///< Transient -- Wont be saved
 ePersistent = 0x100, ///< Persistent -- Saved when file is written
 eOverride = 0x2, ///< Existing value can be overriden
 eNoOverride = 0x200, ///< Cannot change existing value
 eTruncate = 0x4, ///< Leading, trailing blanks can be truncated
 eNoTruncate = 0x400 ///< Cannot truncate parameter value
 };
 typedef int TFlags; ///< Binary OR of "EFlags"

TFlags is simply used to clarify that an int derived from a combination (bit-wise OR) of
EFlags is expected - not just an arbitrary "regular" int. Many of CNcbiRegistry's methods take
an optional TFlags argument, which qualifies the selected values with respect to these attributes.

For example, the following code excerpt sets the value of registry entry MyName in section
MySection to "Eugene". In particular, the TFlags argument, derived from the bit-wise OR of
eTruncate and eNoOverride, specifies that (1) all leading and trailing blanks in the new value

should be truncated, and (2) that the new value cannot be applied to override a previous value if
one exists:

CNcbiRegistry reg(.....);
...
reg.Set("MySection", "MyName", " Eugene ",
 CNcbiRegistry::eNoOverride | CNcbiRegistry::eTruncate);

Main Methods of CNcbiRegistry
The CNcbiRegistry class constructor takes two arguments - an input stream to read the registry
from (usually a file), and an optional TFlags argument, where the latter can be used to specify
that all of the values should be stored as transient rather than in the default mode, which is per-
sistent:

CNcbiRegistry(CNcbiIstream& is, TFlags flags = 0);

Once the registry has been initialized by its constructor, it is also possible to load additional
parameters from other file(s) using the Read() method:

void Read(CNcbiIstream& is, TFlags flags = 0);

Valid flags for the Read() method include eTransient and eNoOverride. The default is

for all values to be read in as persistent, with the capability of overriding any previously loaded
value associated with the same name. Either or both of these defaults can be modified by specify-
ing eTransient, eNoOverride, or (eTransient | eNoOverride) as the flags argument

in the above expression.
The Write() method takes as its sole argument, a destination stream to which only the persis-

tent configuration parameters will be written.

C++ Toolkit Book The CORELIB Module

8-33

bool Write(CNcbiOstream& os) const;

The configuration parameter values can also be set directly inside your application, using:

bool Set(const string& section, const string& name, const string& value, TFlags flags =
0);

Here, valid flag values include ePersistent, eNoOverride, eTruncate, or any logical

combination of these. If eNoOverride is set and there is a previously defined value for this

parameter, then the value is not reset, and the method returns false.
The Get() method first searches the set of transient parameters for a parameter named name,

in section section, and if this fails, continues by searching the set of persistent parameters.

However, if the ePersistent flag is used, then only the set of persistent parameters will be

searched. On success, Get() returns the stored value. On failure, the empty string is returned.

const string& Get(const string& section, const string& name, TFlags flags = 0) const;

Additional Registry Methods
Four additional note-worthy methods defined in the CNcbiRegistry interface are:

bool Empty(void) const;
void Clear(void);
void EnumerateSections(list<string>*sections) const;
void EnumerateEntries(const string& section, list<string>* entries) const;

Empty() returns true if the registry is empty. Clear() empties out the registry, discarding all
stored parameters. EnumerateSections() writes all registry section names to the list of strings
parameter named "sections". EnumerateEntries() writes the list of parameter names in section to
the list of strings parameter named "entries".

Portable Stream Wrappers
Because of differences in the C++ standard stream implementations between different compilers
and platforms, the file ncbistre.hpp contains portable aliases for the standard classes. To pro-
vide portability between the supported platforms, it is is recommended the definitions in ncbistre.
hpp be used.

The ncbistre.hpp defines wrappers for many of the standard stream classes and contains
conditional compilation statements triggered by macros to include portable definitions. For exam-
ple, not all compilers support the newer '#include <iostream>' form. In this case, the older
'#include <iostream.h>' is used based on whether the macro NCBI_USE_OLD_IOSTREAM is

defined.
Instead of using the iostream, istream or ostream, you should use the portable CNcbi-

Iostream, CNcbiIstream and CNcbiOstream. Similarly, instead of using the standard cin,

cout, cerr you can use the more portable NcbiCin, NcbiCout, and NcbiCerr.

C++ Toolkit Book The CORELIB Module

8-34

The ncbistre.hpp also defines functions that handle platform-specific end of line reads. For
example, Endl() represents platform specific end of line, and NcbiGetline() reads from a speci-
fied input stream to a string, and NcbiGetlineEOL() reads from a specified input stream to a
string taking into account platform specific end of line.

Working with Diagnostic Streams (*)
This section provides reference information on the use of the diagnostic stream classes. For an
overview of the diagnostic stream concepts refer to the introductory chapter.

The CNcbiDiag class implements the functionality of an output stream enhanced with error
posting mechanisms similar to those found in the NCBI C Toolkit. A CNcbiDiag object has the
look and feel of an output stream; its member functions and friends include output operators and
format manipulators. A CNcbiDiag object is not itself a stream, but serves as an interface to a
stream which allows multiple threads to write to the same output. Each instance of CNcbiDiag
includes the following private data members:

• a buffer to store (a single) message text

• a severity level

• a set of post flags

Limiting each instance of CNcbiDiag to the storage and handling of a single message
ensures that multiple threads writing to the same stream will not have interleaving message texts.

The following topics are discussed in this section:

• Setting Diagnostic Severity Levels

• Controlling Apperance of Diagnostic Message using Post Flags

• Defining the Output Stream

• The Message Buffer

• Error codes and their Descriptions

• Defining Custom Handlers using CDiagHandler

• The ERR_POST Macro

• The _TRACE macro

• Example Usage of the CNcbiDiag class

Setting Diagnostic Severity Levels
Each CNcbiDiag instance has its own (EDiagSev) severity level, which is compared to a global
severity threshold to determine whether or not its message should be posted. Six levels of sever-
ity are defined by the EDiagSev enumeration:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNcbiDiag.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagSev

C++ Toolkit Book The CORELIB Module

8-35

/// Severity level for the posted diagnostics.
enum EDiagSev {
 eDiag_Info = 0, ///< Informational message
 eDiag_Warning, ///< Warning message
 eDiag_Error, ///< Error message
 eDiag_Critical, ///< Critical error message
 eDiag_Fatal, ///< Fatal error -- guarantees exit(or abort)
 eDiag_Trace, ///< Trace message
 // Limits
 eDiagSevMin = eDiag_Info, ///< Verbosity level for min. severity
 eDiagSevMax = eDiag_Trace ///< Verbosity level for max. severity
};

The default is to post only those messages whose severity level exceeds the eDiag_Warn-
ing level (i.e. eDiag_Error, eDiag_Critical, and eDiag_Fatal). The global severity

threshold for posting messages can be reset using SetDiagPostLevel (EDiagSev postSev). A
parallel function, SetDiagDieLevel (EDiagSev dieSev), defines the severity level at which execu-
tion will abort.

Tracing is considered to be a special, debug-oriented feature, and therefore messages with
severity level eDiag_Trace are not affected by these global post/die levels. Instead, SetDiag-
Trace (EDiagTrace enable, EDiagTrace default) is used to turn tracing on or off. By default, the
tracing is off -- unless you assign the environment variable $DIAG_TRACE to an arbitrary non-

empty string or, alternatively, define a DIAG_TRACE entry in the [DEBUG] section of your reg-
istry file.

The CNcbiDiag class also has class-specific manipulators to control the message severity
level. These can be invoked as in the following examples on diagnostic stream diag:

diag << Info; // set severity level to eDiag_Info
diag << Warning; // set severity level to eDiag_Warning
diag << Error; // set severity level to eDiag_Error [default]
diag << Fatal; // set severity level to eDiag_Fatal
diag << Trace; // set severity level to eDiag_Trace

Controlling Apperance of Diagnostic Message using Post Flags
The post flags define additional information that will inserted into the output messages and
appear along with the message body. The standard format of a message is:

"<file>", line <line>: <severity>: (<err_code>.<err_subcode>)
[<prefix1>::<prefix2>::<prefixN>] <message>\n
<err_code_message\n
<err_code_explanation>

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagDieLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace

C++ Toolkit Book The CORELIB Module

8-36

where the each field are displayed (or not) depending on the post flags EDiagPostFlag asso-
ciated with the CNcbiDiag:

enum EDiagPostFlag {
 eDPF_File = 0x1, ///< Set by default #if _DEBUG; else not set
 eDPF_LongFilename = 0x2, ///< Set by default #if _DEBUG; else not set
 eDPF_Line = 0x4, ///< Set by default #if _DEBUG; else not set
 eDPF_Prefix = 0x8, ///< Set by default (always)
 eDPF_Severity = 0x10, ///< Set by default (always)
 eDPF_ErrCode = 0x20, ///< Set by default (always)
 eDPF_ErrSubCode = 0x40, ///< Set by default (always)
 eDPF_ErrCodeMessage = 0x100, ///< Set by default (always)
 eDPF_ErrCodeExplanation = 0x200, ///< Set by default (always)
 eDPF_ErrCodeUseSeverity = 0x400, ///< Set by default (always)
 eDPF_DateTime = 0x80, ///< Include date and time
 eDPF_OmitInfoSev = 0x4000,///< No severity indication if eDiag_Info

 /// Set all flags.
 eDPF_All = 0x3FFF,

 /// Set all flags for using with __FILE__ and __LINE__.
 eDPF_Trace = 0x1F,

 /// Print the posted message only; without severity, location, prefix, etc.
 eDPF_Log = 0x0,

 /// Ignore all other flags, use global flags.
 eDPF_Default = 0x8000
};

The default message format displays only the severity level and the message body. This can
be overridden inside the constructor for a specific instance of CNcbiDiag, or globally, using Set-
DiagPostFlag(EDiagPostFlagflag) on a selected flag.

Defining the Output Stream
All CNcbiDiag objects are associated with a global output stream. The default is to post mes-
sages to cerr ouput stream, but the stream destination can be reset at any time using:

SetDiagStream(CNcbiOstream* os, bool quick_flush,
FDiagCleanupcleanup, void* cleanup_data)

This function can be called numerous times, thus allowing different sections of the executable
to write to different files. At any given time however, all CNcbiDiag objects will be associated with
the same global output stream. Because the messages are completely buffered, each message
will appear on whatever stream is active at the time the message actually completes.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagStream
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagCleanup

C++ Toolkit Book The CORELIB Module

8-37

And, of course, you can provide (using SetDiagHandler) your own message posting handler
CDiagHandler, which does not necessarily write the messages to a standard C++ output stream.
To preserve compatibility with old code, SetDiagHandler also continues to accept raw callback
functions of type FDiagHandler.

The Message Buffer
The CNcbiDiag message buffer is initialized when the class is first instantiated. Additional infor-
mation can then be appended to the message using the overloaded stream operator <<. Mes-
sages can then be terminated explicitly using CNcbiDiag's stream manipulator Endm, or implic-
itly, when the CNcbiDiag object exits scope.

Implicit message termination also occurs as a side effect of applying one of the severity level
manipulators. Whenever the severity level is changed, CNcbiDiag also automatically executes
the following two manipulators:

• Endm -- the message is complete and the message buffer will be flushed

• Reset -- empty the contents of the current message buffer

When the message controlled by an instance of CNcbiDiag is complete, CNcbiDiag calls a
global callback function (of type FDiagHandler) and passes the message (along with its severity
level) as the function arguments. The default callback function posts errors to the currently desig-
nated output stream, with the action (continue or abort) determined by the severity level of the
message.

Error codes and their Descriptions
The CNcbiDiag class is capable of posting messages with error codes using the ErrCodemanipu-
lator. For example:

diag << ErrCode(2,1); // set error code 2, subcode 1

Error codes and subcodes are posted to an output stream only if applicable post flags were
set. In addition to error codes, CNcbiDiag can also post their text explanations. It uses CDiagEr-
rCodeInfo class to find an error message, which corresponds to a given error code/subcode.
Such descriptions could be specified directly in the program code or placed in a separate mes-
sage file. It is even possible to use several such files simultaneously. CDiagErrCodeInfo can
also read error descriptions from any input stream(s), not necessarily files.

The following additional topics are discussed in the folllowing subsections:

• Preparing an Error Message File

• Using Error Codes in a Program

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ErrCode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDiagErrCodeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDiagErrCodeInfo

C++ Toolkit Book The CORELIB Module

8-38

Preparing an Error Message File
The error message file contains plain ASCII text data. We would suggest using the .msg exten-
sion, but this is not mandatory. For example, the message file for an application named SomeApp
might be called SomeApp.msg.

The message file must contain a line with the keyword MODULE in it, followed by the name
of the module (in our example SomeApp). This line must be placed in the beginning of the file,
before any other declarations. Lines with symbol # in the first position are treated as comments
and ignored.

Here is an example of the message file:

This is a message file for application "SomeApp"

MODULE SomeApp

------ Code 1 ------
$$ NoMemory, 1, Fatal : Memory allocation error

------ Code 2 ------
$$ File, 2, Critical : File error

$^ Open, 1 : Error open a specified file
This often indicates that the file simply does not exist.
Or, it may exist but you do not have permission to access the file in the requested mode.

$^ Read, 2, Error : Error read file
Not sure what would cause this...

$^ Write, 3, Critical
This may indicate that the filesystem is full.

------ Code 3 ------
$$ Math, 3
$^ Param, 20
$^ Range, 3

Lines beginning with $$ define a top-level error code. Similarly, lines beginning with $^ define
subcodes of the top-level error code. In the above example Open is a subcode of File top-level
error, which means the error with code 2 and subcode 1.

Both types of lines have similar structure:

$$/$^ <mnemonic_name>, <code> [, <severity>] [: <message>] \n
[<explanation>]

where

• mnemonic_name (required) Internal name of the error code/subcode. This is used as a

part of an error name in a program code - so, it should also be a correct C/C++ identifier.

• code (required) Integer identifier of the error.

C++ Toolkit Book The CORELIB Module

8-39

• severity (optional) This may be supplied to specify the severity level of the error. It may

be specified as a severity level string (valid values are Info, Warning, Error, Critical, Fatal,
Trace) or as an integer in the range from 0 (eDiag_Info) to 5 (eDiag_Trace). While

integer values are acceptable, string values are more readable. If the severity level was
not specified or could not be recognized, it is ignored, or inherited from a higher level (the
severity of a subcode becomes the same as the severity of a top-level error code, which
contains this subcode). As long as diagnostic eDPF_ErrCodeUseSeverity flag is set,

the severity level specified in the message file overrides the one specified in a program,
which allows for runtime customization. In the above example, Critical severity level will be
used for all File errors, except Read subcode, which would have Error severity level.

• message (optional) Short description of the error. It must be a single-line message. As

long as diagnostic eDPF_ErrCodeMessage flag is set, this message is posted as a part of

the diagnostic output.

• explanation (optional) Following a top-level error code or a subcode definition string, it

may be one or several lines of an explanation text. Its purpose is to provide additional
information, which could be more detailed description of the error, or possible reasons of
the problem. This text is posted in a diagnostic channel only if eDPF_ErrCodeExplana-
ton flag was set.

Using Error Codes in a Program
Taking a message file as an input, script msg2hpp.sh could generate a C/C++ header file with
macro definitions of error codes. Based on our example, this script would generate the following:

#ifndef __MODULE_SomeApp__
#define __MODULE_SomeApp__

#define ERR_NoMemory 1,0
#define ERR_Fil 2,0
#define ERR_File_Open 2,1
#define ERR_File_Read 2,2
#define ERR_File_Write 2,3
#define ERR_Math 3,0
#define ERR_Math_Param 3,20
#define ERR_Math_Range 3,3

#endif

Having included this file in an application, it is possible to use mnemonic error names:

diag << ErrCode(ERR_File_Open);

instead of their numeric representations:

diag << ErrCode(2,1);

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/msg2hpp.sh

C++ Toolkit Book The CORELIB Module

8-40

Defining Custom Handlers using CDiagHandler
The user can install his own handler (of type CDiagHandler,) using SetDiagHandler(). CDi-
agHandler is a simple abstract class:

class CDiagHandler
{
public:
 /// Destructor.
 virtual ~CDiagHandler(void) {}

 /// Post message to handler.
 virtual void Post(const SDiagMessage& mess) = 0;
};

where SDiagMessage is a simple struct defined in ncbidiag.hpp whose data members' val-
ues are obtained from the CNcbiDiag object. The transfer of data values occurs at the time that
Post is invoked. See also the section on Message posting for a more technical discussion.

The ERR_POST Macro
An ERR_POST(message) macro is also available for routine error posting. This macro implicitly

creates a temporary CNcbiDiag object and puts the passed "message" into it with a default
severity of eDiag_Error. A severity level manipulator can be applied if desired, to modify the

message's severity level. For example:

long lll = 345;
ERR_POST("My ERR_POST message, print long: " << lll);

would write to the diagnostic stream something like:

"somefile.cpp", line 111: Error: My ERR_POST message, print long: 345

while:

double ddd = 123.345;
ERR_POST(Warning << "...print double: " << ddd);

would write to the diagnostic stream something like:

"somefile.cpp", line 222: Warning: ...print double: 123.345

The _TRACE macro
The _TRACE(message) macro is a debugging tool that allows the user to insert trace statements

that will only be posted if the code was compiled in debug mode, and provided that the tracing
has been turned on. If DIAG_TRACE is defined as an enviroment variable, or as an entry in the

[DEBUG] section of your configuration file (*.ini), the initial state of tracing is on. By default, if no
such variable or registry entry is defined, tracing is off. SetDiagTrace (EDiagTrace enable, EDi-
agTrace default) is used to turn tracing on/off.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SDiagMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace

C++ Toolkit Book The CORELIB Module

8-41

Just like ERR_POST, the _TRACE macro takes a message, and the message will be posted

only if tracing has been enabled. For example:

SetDiagTrace(eDT_Disable);
_TRACE("Testing the _TRACE macro");
SetDiagTrace(eDT_Enable);
_TRACE("Testing the _TRACE macro AGAIN");

Here, only the second trace message will be posted, as tracing is disabled when the first
_TRACE() macro call is executed.

Example Usage of the CNcbiDiag class
Normally, one should use ERR_POST() and _TRACE() macro to post messages, and regulate
the severity level by using severity level manipulators, like:

ERR_POST(Info << "A notice" << "Fooo");
ERR_POST(Critical << "Some critical error");

Examples in diag.cpp demonstrate the use of ERR_POST and _TRACE. CTestApp::Run()
begins by testing the ERR_POST and _TRACE macros. Initially, tracing is enabled (from the reg-

istry file), so the first _TRACE message is posted. Tracing is then explicitly disabled, so the sec-

ond _TRACE message is not posted.

Next, the global severity level for posting messages is set to the lowest level (eDiag_Info)

so that all but the trace messages will be visible. Trace messages are still disabled by the explicit
call to SetDiagTrace(). Five instances of the CNcbiDiag class are then created, each with an
associated file name, line number, severity level, and enumerated value for the post flags. A sin-
gle message, Msg will be posted on all of the diagnostic streams.

myHandler() is then installed to replace the default message handler. The last two mes-
sages, which are created after the new handler has been installed, are handled by myHandler().
The first of these is a trace message however, and because tracing is now disabled, this mes-
sage will not be made visible. All of the messages which do not explicitly use the Endm manipula-
tor are automatically terminated when Run() exits.

Output generated by diag.cpp:

"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",
 line 23: Error: My ERR_POST message, print long: 345
"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",
 line 26: Warning: ...print double: 123.345
"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",
 line 34: Trace: Testing the _TRACE macro
"diag.cpp", line 41: Info: This is a test message
"diag.cpp", line 42: Warning: This is a test message
"diag.cpp", line 43: Error: This is a test message
Installed Handler "diag.cpp", line 45: Critical: This is a test message

C++ Toolkit Book The CORELIB Module

8-42

Debug Macros
A number of debug macros such as _TRACE, _TROUBLE, _ASSERT, _VERIFY, _DEBUG_ARG can

be used when the _DEBUG macro is defined.

These macros are part of CORELIB. However, they are discussed in a separate chapter on
Debugging, Exceptions, and Error Handling.

Handling Exceptions
The CORELIB defines an extended exception handling mechanism based on the C++ std::
exception, but which considerably extends this mechanism to provide a backlog, history of unfin-
ished tasks, and more meaningful reporting on the exception itself.

While the extended exception handling mechanism is part of CORELIB, it is discussed in a
separate chapter on Debugging, Exceptions, and Error Handling.

Defining the Standard NCBI C++ types and their Limits
The following section provides a reference to the files and limit values used to in the C++ Toolkit
to write portable code. An introduction to the scope of some of these portability definitions is pre-
sented the introduction chapter.

The following topics are discussed in this section:

• Headers Files containing Portability Definitions

• Built-in Integral Types

• Auxiliary Types

• Fixed-size Integer Types

• The "Ncbi_BigScalar" Type

• Encouraged and Discouraged Types

Headers Files containing Portability Definitions

• corelib/ncbitype.h -- definitions of NCBI fixed-size integer types

• corelib/ncbi_limits.h -- numeric limits for:

• NCBI fixed-size integer types

• built-in integer types

• built-in floating-point types

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h

C++ Toolkit Book The CORELIB Module

8-43

• corelib/ncbi_limits.hpp -- temporary (and incomplete) replacement for the Standard C++
Template Library's API

Built-in Integral Types
We encourage the use of standard C/C++ types shown in Table 4, and we state that the following
assumptions (no less, no more) on their sizes and limits will be valid for all supported platforms:

Table 4. Standard C/C++ Types

Name Size(bytes) Min Max Note

char 1 kMin_Char (0 or -
128)

kMax_Char (256 or
127)

It can be either
signed or
unsigned! Use it
wherever you dont
care of +/- (e.g. in
character strings).

signed char 1 kMin_SChar (-128) kMax_SChar (127)
unsigned char 1 kMin_UChar (0) kMax_UChar (255)
short, signed

short
2 or more kMin_Short (-32768

or less)
kMax_Short (32767

or greater)
Use "int" if size isn't

critical
usigned short 2 or more kMin_UShort (0) kMax_UShort (65535

or greater)
Use "unsigned int"

if size isn't critical
int, signed
int

4 or more kMin_Int (-
2147483648 or
less)

kMax_Int
(2147483647 or
greater)

unsigned int 4 or more kMin_UInt (0) kMax_UInt
(4294967295 or
greater)

double 4 or more kMin_Double kMax_Double

Types "long" and "float" are discouraged to use in the portable code.
Type "long long" is prohibited to use in the portable code.

Auxiliary Types
Use type "bool" to represent boolean values. It accepts one of { false, true }.

Use type "size_t" to represent a size of memory structure, e.g. obtained as a result of sizeof
operation.

Use type "SIZE_TYPE" to represent a size of standard C++ "string", -- this is a portable
substitution for "std::string::size_type".

Fixed-size Integer Types
Sometimes it is necessary to use an integer type which:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.hpp

C++ Toolkit Book The CORELIB Module

8-44

• has a well-known fixed size(and lower/upper limits)

• be just the same on all platforms(but maybe a byte/bit order, depending on the processor
architecture)

NCBI C++ standard headers provide the fixed-size integer types shown in Table 5:

Table 5. Fixed-integer Types

Name Size(bytes) Min Max

Char, Int1 1 kMin_I1 kMax_I1
Uchar, Uint1 1 0 kMax_UI1
Int2 2 kMin_I2 kMax_I2
Uint2 2 0 kMax_UI2
Int4 4 kMin_I4 kMax_I4
Uint4 4 0 kMax_UI4
Int8 8 kMin_I8 kMax_I8
Uint8 8 0 kMax_UI8

In Table 6, the "kM*_*" are constants of relevant fixed-size integer type. They are guaran-

teed to be equal to the appropriate preprocessor constants from the old NCBI C headers
("INT*_M*"). Please also note that the mentioned "INT*_M*" are not defined in the C++ head-

ers -- in order to discourage their use in the C++ code.

Table 6. Correspondence between the kM*_* constants and the old style INT*_M* constants

Constant(NCBI C++) Value Define(NCBI C)

kMin_I1 -128 INT1_MIN
kMax_I1 +127 INT1_MAX
kMax_UI1 +255 UINT1_MAX
kMin_I2 -32768 INT2_MIN
kMax_I2 +32767 INT2_MAX
kMax_UI2 +65535 UINT2_MAX
kMin_I4 -2147483648 INT4_MIN
kMax_I4 +2147483647 INT4_MAX
kMax_UI4 +4294967295 UINT4_MAX
kMin_I8 -9223372036854775808 INT8_MIN
kMax_I8 +9223372036854775807 INT8_MAX
kMax_UI8 +18446744073709551615 UINT8_MAX

C++ Toolkit Book The CORELIB Module

8-45

The "Ncbi_BigScalar" Type
NCBI C++ standard headers also define a special type "Ncbi_BigScalar". The only assumption
that can be made(and used in your code) is that "Ncbi_BigScalar" variable has a size which is
enough to hold any integral, floating-point or pointer variable like "Int8", or "double"("long dou-
ble"), or "void*". This type can be useful e.g. to hold a callback data of arbitrary fundamental
type; however, in general, the use of this type is discouraged.

Encouraged and Discouraged Types
For the sake of code portability and for better compatibility with the third-party and system
libraries, one should follow the following set of rules:

• Use standard C/C++ integer types "char", "signed char", "unsigned char", "short",
"unsigned short", "int", "unsigned int" in any case where the assumptions made for
them in Table 4 are enough.

• It is not recommended to use "long" type unless it is absolutely necessary (e.g. in the
lower-level or third-party code), and even if you have to, then try to localize the use of
"long" as much as possible.

• The same(as for "long") is for the fixed-size types enlisted in Table 5. -- If you have to use
these in your code, try to keep them inside your modules and avoid mixing them with stan-
dard C/C++ types (as in assignments, function arg-by-value passing and in arithmetic
expressions) as much as possible.

• For the policy on other types see in sections "Auxiliary types" and "Floating point types".

Understanding Smart Pointers: the CObject and CRef Classes
This section provides reference information on the use of CRef and CObject classes. For an
overview of these classes refer to the introductory chapter.

The following is a list of topics discussed in this section:

• STL auto_ptrs

• The CRef Class

• The CObject Class

• The CObjectFor class: using smart pointers for standard types

• When to use CRefs and auto_ptrs

• CRef Pitfalls

C++ Toolkit Book The CORELIB Module

8-46

STL auto_ptrs
C programmers are well-acquainted with the advantages and pitfalls of using pointers. As is often
the case, the good news is also the bad news:

• memory can be dynamically allocated as needed, but may not be deallocated as needed,
due to unanticipated execution paths;

• void pointers allow heterogeneous function arguments of different types, but type informa-
tion may not be there when you need it.

C++ adds some additional considerations to pointer management: STL containers cannot
hold reference objects, so you are left with the choice of using either pointers or copies of objects.
Neither choice is attractive, as pointers can cause memory leaks and the copy constructor may
be expensive.

The idea behind a C++ smart pointer is to create a wrapper class capable of holding a
pointer. The wrapper class's constructors and destructors can then handle memory management
as the object goes in and out of scope. The problem with this solution is that it does not handle
multiple pointers to the same resource properly, and it raises the issue of ownership. This is
essentially what the auto_ptr offers, but this strategy is only safe to use when the resource maps
to a single pointer variable.

For example, the following code has two very serious problems:

int* ip = new int(5);
{
 auto_ptr<int> a1(ip);
 auto_ptr<int> a2(ip);
}
*ip = 10/(*ip);

The first problem occurs inside the block where the two auto_ptrs are defined. Both are ref-
erencing the same variable pointed to by yet another C pointer, and each considers itself to be
the owner of that reference. Thus, when the block is exited, the delete[] operation is executed
twice for the same pointer.

Even if this first problem did not occur - for example if only one auto_ptr had been defined -
the second problem occurs when we try to dereference ip. The delete operation occurring as the

block exits has now reset *ip to 0, so an attempt to divide by zero occurs.

The problem with using auto_ptr is that it provides semantics of strict ownership. When an
auto_ptr is destructed, it deletes the object it points to, and therefore the object should not be
pointed to simulateously by others. Two or more auto_ptrs should not own the same object; that
is, point to the same object. This can occur if two auto_ptrs are initialized to the same object, as
seen in the above example where auto pointers a1 and a2 are both initialized with ip. In using

auto_ptr, the programmer must ensure that situations similar to the above do not occur.
See also STL auto_ptrs for additional discussion on using auto_ptr.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=auto_ptr
http://www.langer.camelot.de/Articles/C++Report/AutoPointer/AutoPointer.html

C++ Toolkit Book The CORELIB Module

8-47

The CRef (%20) Class
These issues are addressed in the NCBI C++ Toolkit by using reference-counted smart pointers:
a resource cannot be deallocated until all references to it have ceased to exist. The implementa-
tion of a smart pointer in the NCBI C++ Toolkit is actually divided between two classes: CRef and
CObject.

The CRef class essentially provides a pointer interface to a CObject, while the CObject
actually stores the data and maintains the reference count to it. The constructor used to create a
new CRef pointing to a particular CObject automatically increments the object's reference count.
Similarly, the CRef destructor automatically decrements the reference count. In both cases how-
ever, the modification of the reference count is implemented by a member function of the COb-
ject. The CRef class itself does not have direct access to the reference count and contains only a
single data member -- its pointer to a CObject. In addition to the CRef class's constructors and
destructors, its interface to the CObject pointer includes access/mutate functions such as:

bool Empty()
bool NotEmpty()
CObject* GetPointer()
CObject& GetObject()
CObject* Release()
void Reset(CObject* newPtr)
void Reset(void)
operator bool()
bool operator!()
CRefBase& operator=(const CRefBase& ref)

Both the Release() and Reset() functions set the CRef object's m_ptr to 0, thus effectively

removing the reference to its CObject. There are important distinctions between these two func-
tions however. The Release() method removes the reference without destroying the object, while
the Reset() method may lead to the destruction of the object if there are no other references to it.

If the CObject's internal reference count is 1 at the time Release() is invoked, that reference
count will be decremented to 0, and a pointer to the CObject is returned. The Release() method
can throw two types of exceptions: (1) a null pointer exception if m_ptr is already 0, and (2) an

Illegal CObject::ReleaseReference() exception if there are currently other references to that
object. An object must be free of all references (but this one) before it can be "released". In con-
trast, the Reset(void) function simply resets the CRef's m_ptr to 0, decrements the CObject's
reference count, and, if the CObject has no other references and was dynamically allocated,
deletes the CObject.

Each member function of the CRef class also has a const implementation that is invoked
when the pointer is to a const object. In addition, there is also a CConstRef class that parallels
the CRef class. Both CRef and CConstRef are implemented as template classes, where the
template argument specifies the type of object which will be pointed to. For example, in the sec-
tion on Traversing an ASN.1 Data Structure we examined the structure of the CBiostruc class
and found the following type definition

typedef list< CRef< ::CBiostruc_id > > TId;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CConstRef.html

C++ Toolkit Book The CORELIB Module

8-48

As described there, this typedef defines TId to be a list of pointers to CBiostruc_id objects.
And as you might expect, CBiostruc_id is a specialized subclass of CObject.

The CObject (%20) Class
The CObject class serves as a base class for all objects requiring a reference count. There is
little overhead entailed by deriving a new class from this base class, and most objects in the
NCBI C++ Toolkit are derived from the CObject class. For example, CNCBINode is a direct
descendant of CObject, and all of the other HTML classes descend either directly or indirectly

from CNCBINode. Similarly, all of the ASN.1 classes defined in the include/objects directory, as
well as many of the classes defined in the include/serial directory are derived either directly or
indirectly from the CObject class.

The CObject class contains a single private data member, the reference counter, and a set of
member functions which provide an interface to the reference counter. As such, it is truly a base
class which has no stand-alone utility, as it does not even provide allocation for data values. It is
the descendant classes, which inherit all the functionality of the CObject class, that provide the
necessary richness in representation and allocation required for the widely diverse set of objects
implemented in the NCBI C++ Toolkit. Nevertheless, it is often necessary to use smart pointers
on simple data types, such as int, string etc. The CObjectFor class, described below, was
designed for this purpose.

The CObjectFor (%20) class: using smart pointers for standard types
The CObjectFor class is derived directly from CObject, and is implemented as a template class
whose argument specifies the standard type that will be pointed to. In addition to the reference
counter inherited from its parent class, CObjectFor has a private data member of the parameter-
ized type, and a member function GetData() to access it.

An example program, smart.cpp, uses the CRef and CObjectFor classes, and demonstrates
the differences in memory management that arise using auto_ptr and CRef. Using an auto_ptr
to reference an int, the program tests whether or not the reference is still accessible after an aux-
illiary auto_ptr which goes out of scope has also been used to reference it. The same sequence
is then tested using CRef objects instead.

In the first case, the original auto_ptr, orig_ap, becomes NULL at the moment when owner-

ship is transferred to copy_ap by the copy constructor. Using CRef objects however, the refer-

ence contained in the original CRef remains accessible (via orig) in all blocks where orig is

defined. Moreover, the reference itself, i.e. the object pointed to, continues to exist until all refer-
ences to it have been removed.

When to use CRefs and auto_ptrs
There is some overhead in using CRef and auto_ptr, and these objects should only be used
where needed. Memory leaks are generally caused as a result of unexpected execution paths.
For example:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CBiostruc_id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CNCBINode.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CObjectFor.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/CObjectFor.html

C++ Toolkit Book The CORELIB Module

8-49

{
 int *num = new int(5);
 ComplexFunction (num);
 delete num;
 ...
}

If ComplexFunction() executes normally, control returns to the block where it was invoked,
and memory is freed by the delete statement. Unforeseen events however, may trigger excep-
tions, causing control to pass elsewhere. In these cases, the delete statement may never be
reached. The use of a CRef or an auto_ptr is appropriate for these situations, as they both guar-
antee that the object will be destroyed when the reference goes out of scope.

One situation where they may not be required is when a pointer is embedded inside another
object. If that object's destructor also handles the deallocation of its embedded objects, then it is
sufficient to use a CRef on the containing object only.

CRef Pitfalls
Inadvertent Object Destruction

When the last reference to a CRef object goes out of scope or the CRef is otherwise marked for
garbage collection, the object to which the CRef points is also destroyed. This feature helps to
prevent memory leaks, but it also requires care in the use of CRefs within methods and functions.

class CMy : public CObject
{
.....
};

void f(CMy* a)
{
 CRef b = a;
 return;
}

CMy* a = new CMy();
f(a);
// the object "a" is now destroyed!

In this example the function f() establishes a local CRef to the CMy object a. On exitting f()
the CRefb is destroyed, including the implied destruction of the CMy objects a. To avoid this

behavior, pass a CRef to the function f() instead of a normal pointer variable:

CRef a = new CMy();
f(a);
// the CMy object pointed to by "a" is not destroyed!

C++ Toolkit Book The CORELIB Module

8-50

Atomic Counters
The CORELIB implements efficient atomic counters that are used for CObject reference counts.
The classes CAtomicCounter and CMutableAtomicCounter provide respectively a base atomic
counter class, and a mutable atomic counter for multithreaded applications. These classes are
used to in reference counted smart pointers.

The CAtomicCounter base class provides the base methods Get(), Set(), Add() for atomic
counters:

class CAtomicCounter
{
public:
 typedef TNCBIAtomicValue TValue; ///< Alias TValue for TNCBIAtomicValue

 /// Get atomic counter value.
 TValue Get(void) const THROWS_NONE;

 /// Set atomic counter value.
 void Set(TValue new_value) THROWS_NONE;

 /// Atomically add value (=delta), and return new counter value.
 TValue Add(int delta) THROWS_NONE;

 /// Define NCBI_COUNTER_ADD if one has not been defined.
#if defined(NCBI_COUNTER_USE_ASM)
 static TValue x_Add(volatile TValue* value, int delta) THROWS_NONE;
if !defined(NCBI_COUNTER_ADD)
define NCBI_COUNTER_ADD(value, delta) NCBI_NS_NCBI::CAtomicCounter::x_Add((value),
(delta))
endif
#endif

private:
 ...

};

TNCBIAtomicValue is defined as a macro and its definition is platform dependent. If

threads are not used (Macro NCBI_NO_THREADS defined), TNCBIAtomicValue is an unsigned
int value. If threads are used, then a number of defines in file "ncbictr.hpp" ensure that a platform
specific definition is selected for TNCBIAtomicValue.

The CMutableAtomicCounter uses the CAtomicCounter as its internal structure of the
atomic counter but declares this counter value as mutable. The Get(), Set(), Add() methods for
CMutableAtomicCounter are implemented by calls to the corresponding Get(), Set(), Add()
methods for the CAtomicCounter:

class CMutableAtomicCounter

C++ Toolkit Book The CORELIB Module

8-51

{
public:
 typedef CAtomicCounter::TValue TValue; ///< Alias TValue simplifies syntax

 /// Get atomic counter value.
 TValue Get(void) const THROWS_NONE
 { return m_Counter.Get(); }

 /// Set atomic counter value.
 void Set(TValue new_value) const THROWS_NONE
 { m_Counter.Set(new_value); }

 /// Atomically add value (=delta), and return new counter value.
 TValue Add(int delta) const THROWS_NONE
 { return m_Counter.Add(delta); }

private:
 ...
};

Portable mechanisms for loading DLLs
The CDll class defines a portable way of dynamically loading shared libraries and finding entry
points for functions in the libraray. Currently this portable behavior is defined for Unix and MS-
Windows platforms only. On Unix systems loading of the shared library is implemented using the
Unix system call dlopen() and the entry point address obtained using the Unix system call dlsym
(). On MS Windows systems the system call LoadLibraray() is used to load the library, and the
system call GetProcAddress() is used to get a function's entry point address.

All methods of CDll class, except the destructor, throw the exception CCoreException::eDll
on error.

You can specify when to load the DLL -- when the CDll object is created (loading in the con-
structor), or by an explicit call to CDll::Load(). You can also specify whether the DLL is unloaded
automatically when CDll's destructor is called or if the DLL should remain loaded in memory. This
behavior is controlled by arguments to CDll's constructor.

The following additional topics are described in this section:

• CDll Constructor

• CDll Basename

• Other CDll Methods

CDll Constructor
The CDll constructor has two forms:

C++ Toolkit Book The CORELIB Module

8-52

• Constructor 1:

 CDll(const string& name,
 ELoad when_to_load = eLoadNow,
 EAutoUnload auto_unload = eNoAutoUnload,
 EBasename treate_as = eBasename);

• Constructor 2:

 CDll(const string& path, const string& name,
 ELoad when_to_load = eLoadNow,
 EAutoUnload auto_unload = eNoAutoUnload,
 EBasename treate_as = eBasename);

The two constuctor forms are very similar with the exception that constructor 2 uses two
parameters: the path and name parameters to build a path to the DLL, whereas in constructor 1,

the name parameter contains the full path to the DLL. The other parameters in the constructors
are the same.

The parameter when_to_load is defined as an enum type of ELoad and has the values

eLoadNow or eLoadLater. When eLoadNow is passed to the constructor (default value), the DLL
is loaded in the constructor; otherwise it has to be loaded via an explicit call to the Load()
method.

The parameter auto_load is defined as an enum type of EAutoLoad and has the values

eAutoUnload or eNoAutoUnload. When eAutoUnload is passed to the constructor (default value),
the DLL is unloaded in the destructor; otherwise it will remain loaded in memory.

The parameter treat_as is defined as an enum type of EBasename and has the values

eBasename or eExactName. When eBasename is passed to the constructor (default value), the
name parameter is treated as a basename if it looks like one; otherwise the exact name or "as is"
value is used with no addition of prefix or suffix.

CDll Basename
The DLL name is considered the basename if it does not contain embedded '/', '\', or ':' symbols.
Also, in this case, if the DLL name does not match the pattern "lib*.so", "lib*.so.*", or "*.dll" and if
eExactName flag is not passed to the constructor, then it will be automagically transformed
according to the following rules:

• UNIX: <name> -> lib<name>.so

• MS Windows: <name> -> <name>.dll

If the DLL is specified by its basename, then it will be searched after the transformation
described above in the following locations:

C++ Toolkit Book The CORELIB Module

8-53

• UNIX:

1. The directories that are listed in the LD_LIBRARY_PATH environment variable

which are analyzed once at the process startup.

2. The directory from which the application loaded

3. Hard-coded (e.g. with `ldconfig' on Linux) paths

• MS Windows:

1. The directory from which the application is loaded

2. The current directory

3. The Windows system directory

4. The Windows directory

5. The directories that are listed in the PATH environment variable

Other CDll Methods
Two methods mentioned earlier for the CDll class are the Load() and Unload() methods. The
Load() method loads the DLL using the name specified in the constructor's DLL name parameter.

The Load() method is expected to be used when the DLL is not explictly loaded in the construc-
tor. That is, when the CDll constructor is passed the eLoadLater parameter. If the Load() is called
more than once without calling Unload() in between, then it will do nothing. The syntax of the
Load() methods is

void Load(void);

The Unload() method unloads that DLL whose name was specified in the constructor's DLL
name parameter. The Unload() method is expected to be used when the DLL is not explictly

unloaded in the destructor. This occurs, when the CDll constructor is passed the eNoAutoUnload
parameter. If the Unload() is called when the DLL is not loaded, then it will do nothing. The syn-
tax of the Unload() methods is

void Unload(void);

Once the DLL is loaded, you can call the DLL's functions by first getting the function's entry
point (address), and using this to call the function. The function template GetEntryPoint() method
is used to get the entry point address and is defined as:

 template <class TPointer>
 TPointer GetEntryPoint(const string& name, TPointer* entry_ptr);

C++ Toolkit Book The CORELIB Module

8-54

This method returns the entry point's address on success, or NULL on error. If the DLL is not
loaded when this method is called, then this method will call Load() to load the DLL which can
result in throwing an exception if Load() fails.

Some sample code illustrating the use of these methods is shown in src/corelib/test/
test_ncbidll.cpp

Executing Commands and Spawing Processes using the CExec class
The CExec defines a portable execute class that can be used to execute system commands and
spawn new processes.

The following topics relating to the CExec class are discussed, next:

• Executing a System Command using the System() Method

• Defining Spawned Process Modes (EMode type)

• Spawning a Process using SpawnX() Methods

• Waiting for a Process to Terminate using the Wait() method

Executing a System Command using the System() Method
You can use the class-wide CExec::System() method to execute a system command:

static int System(const char* cmdline);

CExec::System() returns the executed command's exit code and throws an exception if the
command failed to execute. If cmdline is a null pointer, CExec::System() checks if the shell
(command interpreter) exists and is executable. If the shell is available, System() returns a non-
zero value; otherwise, it returns 0.

Defining Spawned Process Modes (EMode type)
The spawned process can be created in several modes defined by the enum type EMode . The
meanings of the enum values for EMode type are:

• eOverlay: This mode overlays the calling process with new process, destroying the calling
process.

• eWait: This mode suspends the calling thread until execution of a new process is com-
plete. That is, the called process is called synchronously.

• eNoWait: This is the opposite of eWait. This mode continues to execute the calling process
concurrently with the new called process in an asynchronous fashion.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp

C++ Toolkit Book The CORELIB Module

8-55

• eDetach: This mode continues to execute the calling process and new process is
"detached" and run in background with no access to console or keyboard. Calls to Wait()
against new process will fail. This is an asynchronous spawn.

Spawning a Process using SpawnX() Methods
A new process can be spawned by calling any of the class-wide methods named SpawnX()
which have the form:

static int SpawnX(const EMode mode, const char *cmdname, const char *argv, ...);

The parameter mode has the meanings discussed in the section Defining Spawned Process

Modes (EMode type). The parameter cmdname is the command-line string to start the process,

and parameter argv is the argument vector containing arguments to the process.

The X in the function name is a one to three letter suffix indicating the type of the spawn func-
tion. Each of the letters in the suffix X, for SpawnX() has the following meanings:

• L: The letter "L" as suffix refers to the fact that command-line arguments are passed sepa-
rately as arguments.

• E: The letter "E" as suffix refers to the fact that environment pointer, envp, is passed as an

array of pointers to environment settings to the new process. The NULL environment
pointer indicates that the new process will inherit the parents process's environment.

• P: The letter "P" as suffix refers to the fact that the PATH environment variable is used to

find file to execute. Note that on a Unix platform this feature works in functions without let-
ter "P" in the function name.

• V: The letter "V" as suffix refers to the fact that the number of command-line arguments
are variable.

Using the above letter combinations as suffixes, the following spawn functions are defined:

• SpawnL(): In the SpawnL() version, the command-line arguments are passed individually.
SpawnL() is typically used when number of parameters to the new process is known in
advance.

• SpawnLE(): In the SpawnLE() version, the command-line arguments and environment
pointer are passed individually. SpawnLE() is typically used when number of parameters
to the new process and individual environment parameter settings are known in advance.

• SpawnLP(): In the SpawnLP() version, the command-line arguments are passed individu-
ally and the PATH environment variable is used to find the file to execute. SpawnLP() is
typically used when number of parameters to the new process is known in advance but the
exact path to the executable is not known.

C++ Toolkit Book The CORELIB Module

8-56

• SpawnLPE(): In the SpawnLPE() the command-line arguments and environment pointer
are passed individually, and the PATH environment variable is used to find the file to exe-

cute. SpawnLPE() is typically used when the number of parameters to the new process
and individual environment parameter settings are known in advance, but the exact path to
the executable is not known.

• SpawnV(): In the SpawnV() version, the command-line arguments are a variable number.
The array of pointers to arguments must have a length of 1 or more and you must assign
parameters for the new process beginning from 1.

• SpawnVE(): In the SpawnVE() version, the command-line arguments are a variable num-
ber. The array of pointers to arguments must have a length of 1 or more and you must
assign parameters for the new process beginning from 1. The individual environment
parameter settings are known in advance and passed explicitly.

• SpawnVP(): In the SpawnVP() version, the command-line arguments are a variable num-
ber. The array of pointers to arguments must have a length of 1 or more and you must
assign parameters for the new process beginning from 1. The PATH environment variable

is used to find the file to execute.

• SpawnVPE(): In the SpawnVPE() version, the command-line arguments are a variable
number. The array of pointers to arguments must have a length of 1 or more and you must
assign parameters for the new process beginning from 1. The PATH environment variable

is used to find the file to execute, and the environment is passed via an environment vector
pointer.

Refer to the include/corelib/ncbiexec.hpp file to view the exact form of the SpawnX() function
calls.

Some sample code illustrating the use of these methods is shown in src/corelib/test/
test_ncbiexec.cpp

Waiting for a Process to Terminate using the Wait() method
The CExec class defines a Wait() method that causes a process to wait until the child process
terminates:

 static int Wait(const int pid);

The argument to the Wait() method is the pid (process ID) of the child process on which the caller
is waiting to terminate. Wait() returns immeditately if the specifed child process has already ter-
minated and returns an exit code of the child process, if there are no errors; or a -1, if an error
has occurred.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbiexec.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp

C++ Toolkit Book The CORELIB Module

8-57

Implementing Parralelism using Threads and Synchronization
Mechanisms

This section provides reference information on how to add multithreading to your application and
how to use basic synchronization objects. For an overview of these concepts refer to the introduc-
tory topic on this subject.

Note that all classes are defined in include/corelib/ncbithr.hpp and include/corelib/ncbimtx.
hpp.

The following topics are discussed in this section:

• Using Threads

• CThread class public methods

• CThread class protected methods

• Thread Life Cycle

• Referencing thread objects

• Synchronization

• Thread local storage (CTls<> class [*])

Using Threads
CThread class is defined in include/corelib/ncbithr.hpp. The CThread class provides all basic
thread functionality: thread creation, launching, termination, and cleanup. To create user-defined
thread one needs only to provide the thread's Main() function and, in some cases, create a new
constructor to transfer data to the thread object, and override OnExit() method for thread-specific
data cleanup. To create a custom thread:

1. Derive your class from CThread, override Main() and, if necessary, OnExit() methods.

2. Create thread object in your application. You can do this only with new operator, since
static or in-stack thread objects are prohibited (see below). The best way to reference
thread objects is to use CRef<CThread> class.

3. Call Run() to start the thread execution.

4. Call Detach() to let the thread run independently (it will destroy itself on termination then),
or use Join() to wait for the thread termination.

The code should look like:

#include <corelib/ncbistd.hpp>
#include <corelib/ncbithr.hpp>

USING_NCBI_SCOPE;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbithr.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp

C++ Toolkit Book The CORELIB Module

8-58

class CMyThread : public CThread
{
public:
 CMyThread(int index) : m_Index(index) {}
 virtual void* Main(void);
 virtual void OnExit(void);
private:
 int m_Index;
 int* heap_var;
};

void* CMyThread::Main(void)
{
 cout << "Thread " << m_Index << endl;

 heap_var = new int; // to be destroyed by OnExit()
 *heap_var = 12345;

 int* return_value = new int; // return to the main thread
 *return_value = m_Index;
 return return_value;
}

void CMyThread::OnExit(void)
{
 delete heap_var;
}

int main(void)
{
 CMyThread* thread = new CMyThread(33);
 thread->Run();
 int* result;
 thread->Join(reinterpret_cast<void**>(&result));
 cout << "Returned value: " << *result << endl;
 delete result;
 return 0;
}

The above simple application will start one child thread, passing 33 as the index value. The

thread prints "Thread 33" message, allocates and initializes two integer variables, and termi-

nates. The thread's Main() function returns a pointer to one of the allocated values. This pointer is
then passed to Join() method and can be used by another thread. the other integer allocated by
Main() is destroyed by OnExit() method.

It is important not to terminate the program until there are running threads. Program termina-
tion will cause all the running threads to terminate also. In the above example Join() function is
used to wait for the child thread termination.

The following subsections discuss the individual classes in more detail.

C++ Toolkit Book The CORELIB Module

8-59

CThread (%20) class public methods
CThread(void) Create the thread object (without running it). bool Run(void) Spawn the new
thread, initialize internal CThread data and launch user-provided Main(). The method guarantees
that the new thread will start before it returns to the calling function. void Detach(void) Inform the
thread that user does not need to wait for its termination. Detached thread will destroy itself after
termination. If Detach() is called for a thread, which has already terminated, it will be scheduled
for destruction immediately. Only one call to Detach() is allowed for each thread object. void
Join(void** exit_data) Wait for the thread termination. Join() will store the void pointer as
returned by the user's Main() method, or passed to the Exit() function to the exit_data. Then

the thread will be scheduled for destruction. Only one call to Join() is allowed for each thread
object. If called more than once, Join() will cause a runtime error. static void Exit(void*
exit_data) This function may be called by a thread object itself to terminate the thread. The
thread will be terminated and, if already detached, scheduled for destruction. exit_data value is

transferred to the Join() function as if it was returned by the Main(). Exit() will also call virtual
method OnExit() to execute user-provided cleanup code (if any). bool Discard(void) Schedules
the thread object for destruction if it has not been run yet. This function is provided since there is
no other way to delete a thread object without running it. On success, return true. If the thread
has already been run, Discard() do nothing and return false. static CThread::TID GetSelf(void)
This method returns a unique thread ID. This ID may be then used to identify threads, for exam-
ple, to track the owner of a shared resource. Since the main thread has no associated CThread
object, a special value of 0 (zero) is reserved for the main thread ID.

CThread (%20) class protected methods
virtual void* Main(void)Main() is the thread's main function (just like an application main() func-
tion). This method is not defined in the CThread class. It must be provided by derived user-
defined class. The return value is passed to the Join() function (and thus may be used by another
thread for some sort of inter-thread communication). virtual void OnExit(void) This method is
called (in the context of the thread) just before the thread termination to cleanup thread-specific
resources. OnExit() is NOT called by Discard(), since the thread has not been run in this case
and there are no thread-specific data to destroy. virtual ~CThread(void) The destructor is pro-
tected to avoid thread object premature destruction. For this reason, no thread object can be
static or stack-allocated. It is important to declare any CThread derived class destructor as pro-
tected.

Thread Life Cycle
Figure 2 shows a typical thread life cycle. The figure demonstrates that thread constructors are
called from the parent thread. The child thread is spawned by the Run() function only. Then, the
user-provided Main() method (containing code created by user) gets executed. The thread's
destructor may be called in the context of either parent or child thread depending on the state of
the thread at the moment when Join() or Detach() is called.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread

C++ Toolkit Book The CORELIB Module

8-60

There are two possible ways to terminate a thread. By default, after user-provided Main()
function return, the Exit() is called implicitly to terminate the thread. User functions can call
CThread::Exit() directly. Since Exit() is a static method, the calling function does not need to be
a thread class member or have a reference to the thread object. Exit() will terminate the thread in
which context it is called.

The CThread destructor is protected. The same must be true for any user-defined thread
class in order to prohibit creation of static or automatic thread objects. For the same reason, a
thread object can not be destroyed by explicit delete. All threads destroy themselves on termina-
tion, detaching, or joining.

On thread termination, Exit() checks if the thread has been detached and, if this is true,
destroys the thread object. If the thread has not been detached, the thread object will remain
"zombie" unless detached or joined. Either Detach() or Join() will destroy the object if the thread
has been terminated. One should keep in mind, that it is not safe to use the thread object after a
call to Join() or Detach() since the object may happen to be destroyed. To avoid this situation,
the CRef<CThread> can be used. The thread object will not be destroyed until there is at least
one CRef to the object (although it may be terminated and scheduled for destruction).

In other words, a thread object will be destroyed when all of the following conditions are satis-
fied:

• the thread has been run and terminated by an implicit or explicit call to Exit()

• the thread has been detached or joined

• no CRef references the thread object

Which thread will actually destroy a thread object depends on several conditions. If the thread
has been detached before termination, the Exit() method will destroy it, provided there are no
CRef references to the object. When joined, the thread will be destroyed in the context of a join-
ing thread. If Detach() is called after thread termination, it will destroy the thread in the context of
detaching thread. And, finally, if there are several CRef objects referencing the same thread, it
will be destroyed after the last CRef release.

This means that cleaning up thread-specific data can not be done from the thread destructor.
One should override OnExit() method instead. OnExit() is guaranteed to be called in the context
of the thread before the thread termination. The destructor can be used to cleanup non-thread-
local data only.

There is one more possibility to destroy a thread. If a thread has been created, but does not
need to be run, one can use Discard() method to destroy the thread object without running it.
Again, the object will not be destroyed until there are CRefs referencing it.

C++ Toolkit Book The CORELIB Module

8-61

Figure 2: Thread Life Cycle

Referencing Thread Objects
It should be emphasized that regular (C) pointer to a thread object is not reliable. The thread may
terminate at unpredictable moment, destroying itself. There is no possibility to safely access
thread object after Join() using C pointers. The only solution to this problem is to use CRef class.
CThread class provides a mechanism to prevent premature destruction if there are CRef refer-
ences to the thread object.

Thread local storage (CTls<> class [%20])
The library provides a template class to store thread specific data: CTls<>. This means that each
thread can keep its own data in the same TLS object. To perform any kind of cleanup one can
provide cleanup function and additional cleanup data when storing a value in the TLS object. The
following example demonstrates the usage of TLS:

CRef< CTls<int> > tls;

void TlsCleanup(int* p_value, void* /* data */)
{
 delete p_value;

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTls

C++ Toolkit Book The CORELIB Module

8-62

}

...
void* CMyThread::Main()
{
 int* p_value = new int;
 *p_value = 1;
 tls->SetValue(p_value, TlsCleanup);
 ...
 p_value = new int;
 *p_value = 2;
 tls->SetValue(p_value, TlsCleanup);
 ...
 if (*tls->GetValue() == 2) {
 ...
 }
 ...
}

In the above example the second call to SetValue() will cause the TlsCleanup() to deallocate
the first integer variable. To cleanup the last value stored in each TLS, the CThread::Exit() func-
tion will automatically call CTls<>::Reset() for each TLS used by the thread.

By default, all TLS objects are destroyed on program termination, since in most cases it is not
guaranteed that a TLS object is not (or will not be) used by a thread. For the same reason the
CTls<> destructor is protected, so that no TLS can be created in the stack memory. The best way
of keeping TLS objects is to use CRef.

Calling Discard() will schedule the TLS to be destroyed as soon as there are no CRef refer-
ences to the object left. The method should be used with care.

Mutexes
The ncbimtx.hpp defines platform-independent mutex classes, CMutex, CFastMutex, CMutex-
Guard, and CFastMutexGuard. These mutex classes are in turn built on the plaftform-dependent
mutex classes SSystemMutex and SSystemFastMutex.

In addition to the mutex classes, there are a number of classes that can be used for explict
locks such as the CRWLock, CAutoRW, CReadLockGuard, CWriteLockGuard and the plat-
form-dependent read/write lock, CInternalRWLock.

Finally, there is the CSemaphore class which is an application-wide semaphore.
These classes are discussed in the subsections that follow:

• CMutex

• CFastMutex

• SSystemMutex and SSystemFastMutex

• CMutexGuard and CFastMutexGuard

• Lock Classes

C++ Toolkit Book The CORELIB Module

8-63

CMutex
The CMutex class provides the API for acquiring a mutex. This mutex allows nesting with runtime
checks so recursive locks by the same thread is possible. This mutex checks the mutex owner
before unlocking. CMutex is slower than CFastMutex and should be used when performance is
less important than data protection. If performance is more important than data protection, use
CFastMutex, instead.

The main methods for CMutex operation are Lock(), TryLock() and Unlock():

 void Lock(void);
 bool TryLock(void);
 void Unlock(void);

The Lock() mutex method is used by a thread to acquire a lock. The lock can be acquired
only if the mutex is unlocked; that is, not in use. If a thread has acquired a lock before, the lock
counter is incremented. This is called nesting. The lock counter is only decremented when the
same thread issues an Unlock(). In other words, each call to Lock() must have a corresponding
Unlock() by the same thread. If the mutex has been locked by another thread, then the thread
must wait until it is unlocked. When the mutex is unlocked, the waiting thread can acquire the
lock. This, then, is like a lock on an unlocked mutex.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,
acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE. If
the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and
returns TRUE.

The Unlock() method is used to decrease the lock counter if the mutex has been acquired by
this thread. When the lock counter becomes zero, then the mutex is completely released
(unlocked). If the mutex is not locked or locked by another thread, then the exception CMutexEx-
ception (eOwner) is thrown.

The CMutex uses the functionality of CFastMutex. Because CMutex allows nested locks
and performs checks of mutex owner it is somewhat slower than CFastMutex, but capable of
protecting complicated code, and safer to use. To guarantee for a mutex release, CMutexGuard
can be used. The mutex is locked by the CMutexGuard constructor and unlocked by its destruc-
tor. Macro DEFINE_STATIC_MUTEX(id) will define static mutex variable with name id. Macro

DECLARE_CLASS_STATIC_MUTEX(id) will declare static class member of mutex type name id.

Macro DEFINE_CLASS_STATIC_MUTEX(class, id) will define class static mutex variable

class::id. The following example demonstrates usage of CMutex, including lock nesting:

static int Count = 0;
DEFINE_STATIC_MUTEX(CountMutex);

void Add2(void)
{
 CMutexGuard guard(CountMutex);
 Count += 2;
 if (Count < 20) {
 Add3();
 }

C++ Toolkit Book The CORELIB Module

8-64

}

void Add3(void)
{
 CMutexGuard guard(CountMutex);
 Count += 3;
 if (Count < 20) {
 Add2();
 }
}

This example will result in several nested locks of the same mutex with the guaranteed
release of each lock.

It is important not to unlock the mutex protected by a mutex guard. CFastMutexGuard and
CMutexGuard both unlock the associated mutex on destruction. It the mutex is already unlocked
this will cause a runtime error. Instead of unlocking the mutex directly one can use CFastMutex-
Guard::Release() or CMutexGuard::Release() method. This methods unlock the mutex and
unlink it from the guard.

In addition to usual Lock() and Unlock() methods, the CMutex class implements a method to
test the mutex state before locking it. TryLock() method attempts to acquire the mutex for the
calling thread and returns true on success (this includes nested locks by the same thread) or
false if the mutex has been acquired by another thread. After a successful TryLock() the mutex
should be unlocked like after regular Lock().

CFastMutex
The CFastMutex class provides the API for acquiring a mutex. Unlike CMutex, this mutex does
not permit nesting and does not check the mutex owner before unlocking. CFastMutex is, how-
ever, faster than CMutex and should be used when performance is more important than data
protection. If performance is less important than data protection, use CMutex, instead.

The main methods for CFastMutex operation are Lock(), TryLock() and Unlock():

 void Lock(void);
 bool TryLock(void);
 void Unlock(void);

The Lock() mutex method is used by a thread to acquire a lock without any nesting or owner-
ship checks.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,
acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE. If
the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and
returns TRUE. The locking is done without any nesting or ownership checks.

The Unlock() method is used to unlock the mutex without any nesting or ownership checks.
The CFastMutex should be used only to protect small and simple parts of code. To guaran-

tee for the mutex release the CFastMutexGuard class may be used. The mutex is locked by the
CFastMutexGuard constructor and unlocked by its destructor. To avoid problems with initializa-
tion of static objects on different platforms, special macro definitions are intended to be used to

C++ Toolkit Book The CORELIB Module

8-65

declare static mutexes. Macro DEFINE_STATIC_FAST_MUTEX(id) will define static mutex vari-

able with name id. Macro DECLARE_CLASS_STATIC_FAST_MUTEX(id) will declare static class

member of mutex type with name id. Macro DEFINE_CLASS_STATIC_FAST_MUTEX(class,
id) will define static class mutex variable class::id. The example below demonstrates how to

protect an integer variable with the fast mutex:

void ThreadSafe(void)
{
 static int Count = 0;
 DEFINE_STATIC_FAST_MUTEX(CountMutex);
 ...
 {{
 CFastMutexGuard guard(CountMutex);
 Count++;
 }}
 ...
}

SSystemMutex and SSystemFastMutex
The CMutex class is built on the plaftform-dependent mutex class, SSystemMutex. The SSys-
temMutex is in turn built using the SSystemFastMutex class with additional provisions for keep-
ing track of the thread ownership using the CThreadSystemID, and a counter for the number of
in the same thread locks (nested or recursive locks).

Each of the SSystemMutex and SSystemFastMutex classes have the Lock(), TryLock()
and Unlock() methods that are platform specific. These methods are used by the platform inde-
pendent classes, CMutex and CFastMutex to provide locking and unlocking services.

CMutexGuard and CFastMutexGuard
The CMutexGuard and the CFastMutexGuard classes provide platform independent read and
write lock guards to the mutexes. These classes are aliased as typedefs TReadLockGuard and
TWriteLockGuard in the CMutexGuard and the CFastMutexGuard classes.

Lock Classes
This class implements sharing a resource between multiple reading and writing threads. The fol-
lowing rules are used for locking:

• if unlocked, the RWLock can be acquired for either R-lock or W-lock

• if R-locked, the RWLock can be R-locked by the same thread or other threads

• if W-locked, the RWLock can not be acquired by other threads (a call to ReadLock() or
WriteLock() by another thread will suspend that thread until the RW-lock release).

• R-lock after W-lock by the same thread is allowed but treated as a nested W-lock

• W-lock after R-lock by the same thread results in a runtime error

C++ Toolkit Book The CORELIB Module

8-66

Like CMutex, CRWLock also provides methods for checking its current state: TryReadLock()
and TryWriteLock(). Both methods try to acquire the RW-lock, returning true on success (the
RW-lock becomes R-locked or W-locked) or false if the RW-lock can not be acquired for the call-
ing thread.

The following subsections describe these locks in more detail:

• CRWLock

• CAutoRW

• CReadLockGuard

• CWriteLockGuard

• CInternalRWLock

• CSemaphore

CRWLock
The CRWLock class allows read-after-write (R-after-W) locks for multiple readers or a single
writer with recursive locks. The R-after-W lock is considered to be a recursive Write-lock. The
write-after-read (W-after-R) is not permitted and can be caught when _DEBUG is defined. When

_DEBUG is not defined, it does not always detect the W-after-R correctly, so a deadlock can occur

in these circumstances. Therefore, it is important to test your application in the _DEBUG mode

first.
The main methods in the class API are ReadLock(), WriteLock(), TryReadLock(), Try-

WriteLock() and Unlock().

 void ReadLock(void);
 void WriteLock(void);
 bool TryReadLock(void);
 bool TryWriteLock(void);
 void Unlock(void);

The ReadLock() is used to acquire a read lock. If a write lock has already been acquired by
another thread, then this thread waits until it is released.

The WriteLock() is used to acquire a write lock. If a read or write lock has already been
acquired by another thread, then this thread waits until it is released.

The TryReadLock() and TryWriteLock() methods are used to try and acquire a read or write
lock, respectively, if at all possible. If a lock cannot be acquired, they immediately return with a
FALSE value and do not wait to acqure a lock like the ReadLock() and WriteLock() methods. If a
lock is successfully acquired, a TRUE value is returned.

As expected from the name, the Unlock() method releases the RW-lock.

CAutoRW
The CAutoRW class is used to provide a Read Write lock that is automatically released by the
CAutoRW class' destructor. The locking mechanism is provide by a CRWLock object that is ini-
tialized when the CAutoRW class constructor is called.

C++ Toolkit Book The CORELIB Module

8-67

An acquired lock can be released by an explict call to the class Release() method. The lock
can also be released by the class destructor. When the destructor is called the lock if successfully
acquired and not already released by Release() is released.

CReadLockGuard
The CReadLockGuard class is used to provide a basic read lock guard that can be used by
other classes. This class is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a read lock is acquired,
and which is registered to be released by the class destructor. The class's Guard() method can
also be called with a CRWLock object and if this is not the same as the already registered
CRWLock object, the old registered object is released, and the new CRWLock object is regis-
tered and a read lock acquired on it.

CWriteLockGuard
The CWriteLockGuard class is used to provide a basic write lock guard that can be used by
other classes. The CWriteLockGuard class is similar to the CReadLockGuard class except that
it provides a write lock instead of a read lock. This class is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a write lock is acquired,
and which is registered to be released by the class destructor. The class's Guard() method can
also be called with a CRWLock object and if this is not the same as the already registered
CRWLock object, the old registered object is released, and the new CRWLock object is regis-
tered and a write lock acquired on it.

CInternalRWLock
The CInternalRWLock class holds platform dependent RW-lock data such as data on
semaphores and mutexes. This class is not meant to be used directly by user applications. This
class is used by other classes such as the CRWLock class.

CSemaphore
The CSemaphore class implements a general purpose counting semaphore. The constructor is
passed an initial count for the semaphore and a maximum semaphore count.

When the Wait() method is executed for the semaphore, the counter is decremented by one.
If the semaphore's count is zero then the thread waits until it is not zero. A variation on the Wait()
method is the TryWait() method which is used to prevent long waits. The TryWait() can be
passed a timeout value in seconds and nanoseconds:

 bool TryWait(unsigned int timeout_sec = 0, unsigned int timeout_nsec = 0);

The TryWait() method can wait for the specified time for the semaphore's count to exceed
zero. If that happens, the counter is decremented by one and TryWait() returns TRUE; otherwise,
it returns FALSE.

The semaphore count is incremented by the Post() method and an exception is thrown if the
maximum count is exceeded.

C++ Toolkit Book The CORELIB Module

8-68

Working with File and Directories using CFile and CDir
An application may need to work with files and directories. The CORELIB provides a number of
portable classes to model a system file and directory. The base class for the files and directories
is CDirEntry. Other classes such as CDir and CFile that deal with directories and files are
derived form this base class.

The following sections discuss the file and directory classes in more detail:

• Executing a System Command using the System() Method

• Defining Spawned Process Modes (EMode type)

• Spawning a Process using SpawnX() Methods

• Waiting for a Process to Terminate using the Wait() method

CDirEntry class
This class models the directory entry structure for the file system and assumes that the path
argument has the following form, where any or all components may be missing:

<dir><title><ext>

<dir> = file path ("/usr/local/bin/" or "c:\windows\")
<title> = file name without ext ("autoexec")
<ext> = file extension (".bat" -- whatever goes after the last dot)

The supported filename formats are for the MS DOS/Windows, UNIX and MAC file systems.
The CDirEntry class provides the base methods such as the following for dealing with the

components of a path name :

• GetPath(): Get pathname.

• GetDir(): Get the Directory component for this directory entry.

• GetBase(): Get the base entry name without extension.

• GetName(): Get the base entry name with extension.

• GetExt(): Get the extension name.

• MakePath(): Given the components of a path, combine them to create a path string.

• SplitPath(): Given a path string, split them into its constituent components.

• GetPathSeparator(): Get path separator symbol specific for the platform such as a '\' or '/'.

• IsPathSeparator(): Check character "c" as path separator symbol specific for the platform.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDirEntry&d=C

C++ Toolkit Book The CORELIB Module

8-69

• AddTrailingPathSeparator(): Add a trailing path separator, if needed.

• ConvertToOSPath(): Convert relative "path" on any OS to current OS dependent relative
path.

• IsAbsolutePath(): Note that the "path" must be for current OS.

• ConcatPath(): Concatenate the two parts of the path for the current OS.

• ConcatPathEx(): Concatenate the two parts of the path for any OS.

• MatchesMask(): Match "name" against the filename "mask".

• Rename(): Rename entry to specified "new_path".

• Remove(): Remove the directory entry.

The last method on the list, the Remove() method accepts an enumeration type parameter,
EDirRemoveMode, which specifies the extent of the directory removal operation -- you can
delete only an empty directory, only files in a directory but not any subdirectories, or remove the
entire directory tree:

 /// Directory remove mode.
 enum EDirRemoveMode {
 eOnlyEmpty, ///< Remove only empty directory
 eNonRecursive, ///< Remove all files in directory, but not remove
 ///< subdirectories and files in it
 eRecursive ///< Remove all files and subdirectories
 };

CDirEntry knows about different types of files or directory entries. Most of these file types are
modeled after the Unix file system but can also handle the file system types for the Windows plat-
form. The different file system types are represented by the enumeration type EType which is
defined as follows :

 /// Which directory entry type.
 enum EType {
 eFile = 0, ///< Regular file
 eDir, ///< Directory
 ePipe, ///< Pipe
 eLink, ///< Symbolic link (UNIX only)
 eSocket, ///< Socket (UNIX only)
 eDoor, ///< Door (UNIX only)
 eBlockSpecial, ///< Block special (UNIX only)
 eCharSpecial, ///< Character special
 //
 eUnknown ///< Unknown type
 };

C++ Toolkit Book The CORELIB Module

8-70

CDirEntry knows about permission settings for a directory entry. Again, these are modeled
after the Unix file system. The different permissions are represented by the enumeration type
EMode which is defined as follows :

 /// Directory entry's access permissions.
 enum EMode {
 fExecute = 1, ///< Execute permission
 fWrite = 2, ///< Write permission
 fRead = 4, ///< Read permission
 // initial defaults for dirs
 fDefaultDirUser = fRead | fExecute | fWrite,
 ///< Default user permission for dir.
 fDefaultDirGroup = fRead | fExecute,
 ///< Default group permission for dir.
 fDefaultDirOther = fRead | fExecute,
 ///< Default other permission for dir.
 // initial defaults for non-dir entries (files, etc.)
 fDefaultUser = fRead | fWrite,
 ///< Default user permission for file
 fDefaultGroup = fRead,
 ///< Default group permission for file
 fDefaultOther = fRead,
 ///< Default other permission for file
 fDefault = 8 ///< Special flag: ignore all other flags,
 ///< use current default mode
 };
 typedef unsigned int TMode; ///< Binary OR of "EMode"

The directory entry permissions of read(r), write(w), execute(x), are defined for the "user",
"group" and "others" The initial default permission for directories is "rwx" for "user", "rx" for
"group" and "rx" for "others". These defaults allow a user to create directory entries while the
"group" and "others" can only change to the directory and read a listing of the directory contents.
The initial default permission for files is "rw" for "user", "r" for "group" and "r" for "others". These
defaults allow a user to read and write to a file while the "group" and "others" can only read the
file.

These directory permissions handle most situations but don't handle all permission types. For
example, there is currently no provision for handling the Unix "sticky bit" or the "suid" or "sgid"
bits. Moreover, operating systems such as Windows NT/2000/2003 and Solaris use Access Con-
trol Lists (ACL) settings for files. There is no provison in CDirEntry to handle ACLs

Other methods in CDirEntry deal specifically with checking the attributes of a directory entry
such as the following methods:

• IsFile(): Check if directory entry is a file.

• IsDir(): Check if directory entry is a directory.

• GetType(): Get type of directory entry. This returns an EType value.

C++ Toolkit Book The CORELIB Module

8-71

• GetTime(): Get time stamp of directory entry.

• GetMode(): Get permission mode for the directory entry.

• SetMode(): Set permission mode for the directory entry.

• static void SetDefaultModeGlobal(): Set default mode globally for all CDirEntry objects. This
is a class-wide static method and applies to all objects of this class.

• SetDefaultMode(): Set mode for this one object only.

These methods are inherited by the derived classes CDir and CFile that are used to access
directories and files, respectively.

CFile class
The CFile is derived from the base class, CDirEntry. Besides inheriting the methods discussed in
the previous section, the following new methods specific to files are defined in the CFile class:

• Exists(): Check existence for a file.

• GetLength(): Get size of file.

• GetTmpName(): Get temporary file name.

• GetTmpNameEx(): Get temporary file name in a specific directory and haveing a specified
prefix value.

• CreateTmpFile(): Create temporary file and return pointer to corresponding stream.

• CreateTmpFileEx(): Create temporary file and return pointer to corresponding stream.
You can additionally specify the directory in which to create the temporary file and the pre-
fix to use for the temporary file name.

The methods CreateTmpFile() and CreateTmpFileEx() allow the creation of either a text or
binary file. These two types of files are defined by the enumeration type, ETextBinary, and the
methods accept a parameter of this type to indicate the type of file to be created:

 /// What type of temporary file to create.
 enum ETextBinary {
 eText, ///<Create text file
 eBinary ///< Create binary file
 };

Additionally, you can specify the type of operations (read, write) that should be permitted on
the temporary files. These are defined by the enumeration type, EAllowRead, and the Cre-
ateTmpFile() and CreateTmpFileEx() methods accept a parameter of this type to indicate the
type operations that are permitted:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CFile&d=C

C++ Toolkit Book The CORELIB Module

8-72

 /// Which operations to allow on temporary file.
 enum EAllowRead {
 eAllowRead, ///< Allow read and write
 eWriteOnly ///< Allow write only
 };

CDir class
The CDir is derived from the base class, CDirEntry. Besides inheriting the methods discussed in
the CDirEntry section, the following new methods specific to directories are defined in the CDir
class:

• Exists(): Check existence for a directory.

• GetHome(): Get the user's home directory.

• GetCwd(): Get the current working directory.

• GetEntries(): Get directory entries based on a specified mask parameter. Retuns a vector
of pointers to CDirEntry objects defined by TEntries

• Create(): Create the directory using the directory name passed in the constructor.

• CreatePath(): Create the directory path recursively possibly more than one at a time.

• Remove(): Delete existing directory.

The last method on the list, the Remove() method accepts an enumeration type parameter,
EDirRemoveMode, defined in the CDirEntry class which specifies the extent of the directory
removal operation -- you can delete only an empty directory, only files in a directory but not any
subdirectories, or remove the entire directory tree.

CMemoryFile class
The CMemoryFile is derived from the base class, CDirEntry. This class creates a virtual image
of a disk file in memory that allow normal file operations to be permitted, but the file operations
are actually performed on the image of the file in memory. This can result in considerable
improvements in speed when there are many "disk intensive" file operations being performed on
a file which is mapped to memory.

Besides inheriting the methods discussed in the CDirEntry section, the following new meth-
ods specific to memory mapped are defined in the CMemoryFile class:

• IsSupported(): Check if memory-mapping is supported by the C++ Toolkit on this plat-
form.

• GetPtr(): Get pointer to beginning of data in the memory mapped file.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDir&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CMemoryFile%20&d=C

C++ Toolkit Book The CORELIB Module

8-73

• GetSize(): Get size of the mapped area.

• Flush(): Flush by writing all modified copies of memory pages to the underlying file.

• Unmap(): Unmap file if it has already been mapped.

• MemMapAdvise(): Advise on memory map usage.

• MemMapAdviseAddr(): Advise on memory map usage for specified region.

The methods MemMapAdvise() and MemMapAdviseAddr() allow one to advise on the
expected uage pattern for the memory mapped file. The expected usage pattern is defined by the
enumeration type, EMemMapAdvise, and these methods accept a parameter of this type to indi-
cate the usage pattern:

 /// What type of data access pattern will be used for mapped region.
 ///
 /// Advises the VM system that the a certain region of user mapped memory
 /// will be accessed following a type of pattern. The VM system uses this
 /// information to optimize work with mapped memory.
 ///
 /// NOTE: Now works on UNIX platform only.
 typedef enum {
 eMMA_Normal, ///< No further special treatment
 eMMA_Random, ///< Expect random page references
 eMMA_Sequential, ///< Expect sequential page references
 eMMA_WillNeed, ///< Will need these pages
 eMMA_DontNeed ///< Don't need these pages
 } EMemMapAdvise;

The memory usage advise is implemented on Unix platforms only, and is not supported on
Windows platforms.

String APIs
The ncbistr.hpp file defines a number of useful constants, types and functions for handling string
types. Most of the string functions are defined as class-wides static members of the class NStr.

The following sections provide additional details on strinng APIs

• String Constants

• NStr Class

• UTF Strings

• PCase and PNocase

C++ Toolkit Book The CORELIB Module

8-74

String Constants
For convenience, two types of empty strings are provided. A C-language style string that termi-
nates with the null character ('\0') and a C++ style empty string.

The C-language style empty string constants are NcbiEmptyCStr which is a macro defini-

tion for the NCBI_NS_NCBI::kEmptyCStr. So the NcbiEmptyStr and kEmptyCStr are, for

all practical purposes, equivalent.
The C++-language style empty string constants are NcbiEmptyString and the kEmptyStr

which are macro definitions for the NCBI_NS_NCBI::CNcbiEmptyString::Get() method that
returns an empty string. So the NcbiEmptyString and kEmptyStr are, for all practical pur-

poses, equivalent.
The SIZE_TYPE is an alias for the string::size_type, and the NPOS defines a the constant that

is returned when a substring search fails, or to indicate an unspecified string position.

NStr Class
The NStr class encapsulates a number of class-wide static methods. These include string con-
catenation, string conversion, string comparison, string search functions. Most of these string
operations should be familiar to developers by name. Table 7 presents at a glance, a summary of
these functions.

Table 7. NStr string functions

Function name Parameters Description

StringToNumeric const string& str Convert "str" to a (non-negative) integer
value and return this value. Or return -1
if "str" contains any symbols other than
[0-9], or if it represents a number that
does not fit into an "int".

StringToInt const string& str, int base = 10,
ECheckEndPtr check = eCheck_Need

Convert specified string to int for the
specified base. The check parameter
determines whether trailing symbols
(other than '\0') are permitted. The
default is eCheck_Needed which
means that if there are trailing symbols
after the number, an exception will be
thrown. If the value is eCheck_Skip, the
string can have trailing symbols after
the number.

StringToUInt const string& str, int base = 10,
ECheckEndPtr check = eCheck_Need

Similar to the StringToInt, except that the
conversion is to an unsigned int.
Convert specified string to unsigned int
for the specified base. The check
parameter determines whether trailing
symbols (other than '\0') are permitted.
The default is eCheck_Needed which

C++ Toolkit Book The CORELIB Module

8-75

Function name Parameters Description

means that if there are trailing symbols
after the number, an exception will be
thrown. If the value is eCheck_Skip, the
string can have trailing symbols after
the number.

StringToLong const string& str, int base = 10,
ECheckEndPtr check = eCheck_Need

Similar to the StringToInt, except that the
conversion is to an long. Convert
specified string to a long for the
specified base. The check parameter
determines whether trailing symbols
(other than '\0') are permitted. The
default is eCheck_Needed which
means that if there are trailing symbols
after the number, an exception will be
thrown. If the value is eCheck_Skip, the
string can have trailing symbols after
the number.

StringToULong const string& str, int base = 10,
ECheckEndPtr check = eCheck_Need

Similar to the StringToLong, except that
the conversion is to an unsigned long.
Convert specified string to an unsigned
long for the specified base. The check
parameter determines whether trailing
symbols (other than '\0') are permitted.
The default is eCheck_Needed which
means that if there are trailing symbols
after the number, an exception will be
thrown. If the value is eCheck_Skip, the
string can have trailing symbols after
the number.

StringToDouble const string& str, ECheckEndPtr check =
eCheck_Need

Convert specified string to a double. The
check parameter determines whether
trailing symbols (other than '\0') are
permitted. The default is
eCheck_Needed which means that if
there are trailing symbols after the
number, an exception will be thrown. If
the value is eCheck_Skip, the string
can have trailing symbols after the
number.

StringToInt8 const string& str Convert specified string to a an Int8 value.
StringToUInt8 const string& str Similar to the StringToInt8, except that

the conversion is to an unsigned eight
byte integer. Convert specified string to
a an UInt8 value.

C++ Toolkit Book The CORELIB Module

8-76

Function name Parameters Description

StringToPtr const string& str Convert specified string to a void* pointer
value.

IntToString long value, bool sign = false Convert specified long integer value to its
string represenation. The sign
parameter is used to determine
whether the converted value should be
preceded by the sign (+-) character.

UIntToString unsigned long value Convert specified unsigned long integer
value to its string represenation.

Int8ToString Int8 value, bool sign = false Convert specified eight byte integer value
to its string represenation. The sign
parameter is used to determine
whether the converted value should be
preceded by the sign (+-) character.

UInt8ToString Uint8 value Convert specified eight byte unsigned
integer value to its string represenation.

DoubleToString double value Convert specified double value to its string
represenation.

DoubleToString double value, unsigned int precision Convert specified double value to its string
represenation. The precision parameter
specifies the precision value for
conversion. If precision is more that
maximum for current platform, then it
will be truncated to this maximum.

DoubleToString double value, unsigned int precision, char*
buf, SIZE_TYPE buf_size

Convert specified double value to its string
represenation and return the result of
the conversion into the buf parameter.
The precision parameter specifies the
precision value for conversion. If
precision is more that maximum for
current platform, then it will be
truncated to this maximum. The
function returns the number of bytes
stored in "buf", not counting the
terminating '\0'.

PtrToString const void* ptr Convert specified void* pointer to its string
represenation.

BoolToString bool value Convert the specified boolean to its string
representation. Returns 'true' or 'false'
string.

StringToBool const string& str Convert the specified string value to
Boolean. Can recognize case-
insensitive version as one of: 'true, 't',
'yes', 'y' for TRUE; and 'false', 'f', 'no', 'n'
for FALSE. Returns TRUE or FALSE.

C++ Toolkit Book The CORELIB Module

8-77

Function name Parameters Description

CompareCase const string& str, SIZE_TYPE pos,
SIZE_TYPE n, const char* pattern

Case-sensitive compare of a substring
with a pattern. The substring to be
compared is defined as starting from
the 'pos' parameter and is 'n'
characters long. The pattern to be
matched is specified in the 'pattern'
parameter.

CompareNocase const string& str, SIZE_TYPE pos,
SIZE_TYPE n, const char* pattern

Similar to CompareCase except that the
comparison is case-insensitive. Case-
insensitive compare of a substring with
a pattern. The substring to be
compared is defined as starting from
the 'pos' parameter and is 'n'
characters long. The pattern to be
matched is specified in the 'pattern'
parameter.

CompareNocase const string& str, SIZE_TYPE pos,
SIZE_TYPE n, const string& pattern

Similar to preceding CompareNocase
except that the pattern is a string
reference instead of a char*. Case-
insensitive compare of a substring with
a pattern. The substring to be
compared is defined as starting from
the 'pos' parameter and is 'n'
characters long. The pattern to be
matched is specified in the 'pattern'
parameter.

CompareCase const char* s1, const char* s2 Case-sensitive compare of two strings
given the strings as char* values.

CompareNocase const char* s1, const char* s2 Similar to CompareCase except that the
comparison is case-insensitive. Case-
insensitive compare of two strings
given the strings as char* values.

CompareCase const string& s1, const string& s2 Case-sensitive compare of two strings
given the strings as string references.

CompareNocase const string& s1, const string& s2 Similar to CompareCase except that the
comparison is case-insensitive. Case-
insensitive compare of two strings
given the strings as string references.

Compare const string& str, SIZE_TYPE pos,
SIZE_TYPE n, const char* pattern, ECase
use_case = eCase

Comparison of substring. The substring to
be compared is defined as starting from
the 'pos' parameter and is 'n'
characters long. Whether to do a case
sensitive compare(eCase -- default), or

C++ Toolkit Book The CORELIB Module

8-78

Function name Parameters Description

a case-insensitive compare (eNocase)
is specified by the 'use_case'
parameter.

Compare const string& str, SIZE_TYPE pos,
SIZE_TYPE n, const string& pattern,
ECase use_case = eCase

Similar to preceding Compare except that
the pattern is a string reference instead
of a char*. Comparison of substring.
The substring to be compared is
defined as starting from the 'pos'
parameter and is 'n' characters long.
Whether to do a case sensitive
compare(eCase -- default), or a case-
insensitive compare (eNocase) is
specified by the 'use_case' parameter.

Compare const char* s1, const char* s2, ECase
use_case = eCase

Compare of two strings given the strings
as char* values. Whether to do a case
sensitive compare(eCase -- default), or
a case-insensitive compare (eNocase)
is specified by the 'use_case'
parameter.

Compare const string& s1, const char* s2, ECase
use_case = eCase

Similar to preceding Compare except that
the first string is a string reference
instead of a char*. Compare the two
strings. Whether to do a case sensitive
compare(eCase -- default), or a case-
insensitive compare (eNocase) is
specified by the 'use_case' parameter.

Compare const char* s1, const string& s2, ECase
use_case = eCase

Similar to preceding Compare except that
the second string is a string reference
instead of a char*. Compare the two
strings. Whether to do a case sensitive
compare(eCase -- default), or a case-
insensitive compare (eNocase) is
specified by the 'use_case' parameter.

Compare const string& s1, const string& s2, ECase
use_case = eCase

Similar to preceding Compare except that
both strings are a string reference
instead of a char*. Compare the two
strings. Whether to do a case sensitive
compare(eCase -- default), or a case-
insensitive compare (eNocase) is
specified by the 'use_case' parameter.

strcmp const char* s1, const char* s2 Case sensitive compare of the two strings.
strcasecmp const char* s1, const char* s2 Similar to preceding strcmp except that

this is a case-insensitive compare.
Case insensitive compare of the two
strings.

C++ Toolkit Book The CORELIB Module

8-79

Function name Parameters Description

strcmp const char* s1, const char* s2, size_t n Case sensitive compare of the two strings
up to specified 'n' characters.

strncasecmp const char* s1, const char* s2, size_t n Similar to preceding strcmp except that
this is a case-insensitive compare.
Case insensitive compare of the two
strings up to specified 'n' characters.

strftime char* s, size_t maxsize, const char* format,
const struct tm* timeptr

Formats specified time as string. This is a
wrapper for the function strftime() that
corrects handling %D and %T time
formats on MS Windows.

ToLower string& str Convert string to lower case.
ToLower char* str Similar to preceding ToLower except that

this uses a char* instead of a string
reference. Convert string to lower case.

ToUpper string& str Convert string to uppercase.
ToUpper char* str Similar to preceding ToLower except that

this uses a char* instead of a string
reference. Convert string to uppercase.

StartsWith const string& str, const string& start, ECase
use_case = eCase

Check if a string starts with a specified
prefix value. The 'start' parameter is the
prefix value to check for. The
'use_case' parameter determines
whether to do a case sensitive
compare(default is eCase), or a case-
insensitive compare (eNocase) while
checking.

EndsWith const string& str, const string& end, ECase
use_case = eCase

Check if a string ends with a specified
suffix value. The 'end' parameter is the
suffix value to check for. The
'use_case' parameter determines
whether to do a case sensitive
compare(default is eCase), or a case-
insensitive compare (eNocase) while
checking.

Find const string& str, const string& pattern,
SIZE_TYPE start = 0, SIZE_TYPE end =
NPOS, EOccurrence which = eFirst,
ECase use_case = eCase

Finds the 'pattern' in the specified range of
a string defined as starting from 'start'
and ending with 'end'. The parameter
'which' when set to eFirst, means to
find the first occurrence of the pattern
and when set to eLast, this means to
find the last occurrence. The parameter
'use_case' determines whether to do a
case sensitive compare(default is

C++ Toolkit Book The CORELIB Module

8-80

Function name Parameters Description

eCase), or a case-insensitive compare
(eNocase) while searching for the
pattern.

FindCase const string& str, const string& pattern,
SIZE_TYPE start = 0, SIZE_TYPE end =
NPOS, EOccurrence which = eFirst

Finds the 'pattern' in the specified range of
a string defined as starting from 'start'
and ending with 'end' doing a case
sensitive search. The parameter 'which'
when set to eFirst, means to find the
first occurrence of the pattern and
when set to eLast, this means to find
the last occurrence.

FindNocase const string& str, const string& pattern,
SIZE_TYPE start = 0, SIZE_TYPE end =
NPOS, EOccurrence which = eFirst

Finds the 'pattern' in the specified range of
a string defined as starting from 'start'
and ending with 'end' doing a case
insensitive search. The parameter
'which' when set to eFirst, means to
find the first occurrence of the pattern
and when set to eLast, this means to
find the last occurrence.

TruncateSpaces const string& str, ETrunc
where=eTrunc_Both

Truncate spaces in a string. The
parameter 'which' controls which end of
the string to truncate space from.
Default is to truncate space from both
ends (eTrunc_Both).

Replace const string& src, const string& search,
const string& replace, string& dst,
SIZE_TYPE start_pos = 0, size_t
max_replace = 0

Replace occurrences of a 'search'
substring within the 'replace' string
starting from 'start_pos' and return the
result in 'dst'. The parameter
'max_replace' determines whether to
replace no more than 'max_replace'
occurrences of the substring. If
'max_replace' is zero(default), then
replace all occurrences with 'replace'.

Replace const string& src, const string& search,
const string& replace, SIZE_TYPE
start_pos = 0, size_t max_replace = 0

Replace occurrences of a 'search'
substring within the 'replace' string
starting from 'start_pos' and return the
result in a new string. The parameter
'max_replace' determines whether to
replace no more than 'max_replace'
occurrences of the substring. If
'max_replace' is zero(default), then
replace all occurrences with 'replace'.

C++ Toolkit Book The CORELIB Module

8-81

Function name Parameters Description

Split const string& str, const string& delim,
list<string>& arr, EMergeDelims merge =
eMergeDelims

Split a string using specified 'delim'
delimiters and add the split tokens to
'arr' (a list of strings) and also return
this array. The parameter 'merge'
determines whether to merge the
delimiters or not. The default setting of
eMergeDelims means that delimiters
that immediately follow each other are
treated as one delimiter.

Tokenize const string& str, const string& delim,
list<string>& arr, EMergeDelims merge =
eNoMergeDelims

Tokenize a string using specified 'delim'
delimiters and add the tokens to 'arr' (a
list of strings) and also return this array.
The parameter 'merge' determines
whether to merge the delimiters or not.
The default setting of eNoMergeDelims
means that delimiters that immediately
follow each other are treated as
separate delimiters.

SplitInTwo const string& str, const string& delim, string&
str1, string& str2

Split a string into two pieces 'str1' and
'str2' using the specified delimiters

Join const list<string>& arr, const string& delim Join strings in 'arr' using the specified
delimiter.

PrintableString const string& str, ENewLineMode nl_mode =
eNewLine_Quote

Get a printable version of the specified
string.

Wrap const string& str, SIZE_TYPE width,
list<string>& arr, TWrapFlags flags = 0,
const string* prefix = 0, const string*
prefix1 = 0

Wrap the specified string into lines of a
specified 'width' and place these
wrapped lines in 'arr' a list of strings.
The 'flags' control how to wrap the
words to a new line. The 'prefix' string
is added to each wrapped line, except
the first line, unless 'prefix1' is set. If
'prefix' is set to 0(default), do not add a
prefix string to the wrapped lines. The
'prefix1' string is used for the first line.
Use this for the first line instead of
'prefix'. If 'prefix1' is set to 0(default), do
not add a prefix string to the first line.

Wrap const string& str, SIZE_TYPE width,
list<string>& arr, TWrapFlags flags = 0,
const string* prefix , const string* prefix1 =
0

Similar to preceding Wrap except that
only prefix1 is set to the default value
(0). Wrap the specified string into lines
of a specified 'width' and place these
wrapped lines in 'arr' a list of strings.
The 'flags' control how to wrap the
words to a new line. The 'prefix' string
is added to each wrapped line, except

C++ Toolkit Book The CORELIB Module

8-82

Function name Parameters Description

the first line, unless 'prefix1' is set. If
'prefix' is set to 0(default), do not add a
prefix string to the wrapped lines. The
'prefix1' string is used for the first line.
Use this for the first line instead of
'prefix'. If 'prefix1' is set to 0(default), do
not add a prefix string to the first line.

Wrap const string& str, SIZE_TYPE width,
list<string>& arr, TWrapFlags flags = 0,
const string* prefix , const string* prefix1 =
0

Similar to preceding Wrap except that
neither prefix or prefix1 is set to the
default value. Wrap the specified string
into lines of a specified 'width' and
place these wrapped lines in 'arr' a list
of strings. The 'flags' control how to
wrap the words to a new line. The
'prefix' string is added to each wrapped
line, except the first line, unless 'prefix1'
is set. If 'prefix' is set to 0(default), do
not add a prefix string to the wrapped
lines. The 'prefix1' string is used for the
first line. Use this for the first line
instead of 'prefix'. If 'prefix1' is set to 0
(default), do not add a prefix string to
the first line.

WrapList const list<string>& l, SIZE_TYPE width,
const string& delim, list<string>& arr,
TWrapFlags flags = 0, const string* prefix
= 0, const string* prefix1 = 0

Wrap the specified list into lines of a
specified 'width' and place these
wrapped lines in 'arr' a list of strings.
The 'flags' control how to wrap the
words to a new line. The 'prefix' string
is added to each wrapped line, except
the first line, unless 'prefix1' is set. If
'prefix' is set to 0(default), do not add a
prefix string to the wrapped lines. The
'prefix1' string is used for the first line.
Use this for the first line instead of
'prefix'. If 'prefix1' is set to 0(default), do
not add a prefix string to the first line.

WrapList const list<string>& l, SIZE_TYPE width,
const string& delim, list<string>& arr,
TWrapFlags flags = 0, const string&
prefix, const string* prefix1 = 0

Similar to preceding WrapList except that
prefix1 is set to the default value and
prefix is a reference to a string. Wrap
the specified list into lines of a specified
'width' and place these wrapped lines in
'arr' a list of strings. The 'flags' control
how to wrap the words to a new line.
The 'prefix' string is added to each
wrapped line, except the first line,

C++ Toolkit Book The CORELIB Module

8-83

Function name Parameters Description

unless 'prefix1' is set. If 'prefix' is set to
0(default), do not add a prefix string to
the wrapped lines. The 'prefix1' string is
used for the first line. Use this for the
first line instead of 'prefix'. If 'prefix1' is
set to 0(default), do not add a prefix
string to the first line.

WrapList const list<string>& l, SIZE_TYPE width,
const string& delim, list<string>& arr,
TWrapFlags flags = 0, const string&
prefix, const string& prefix1

Similar to preceding WrapList except that
neither prefix or prefix1 is set to the
default value and both prefix and
prefix1 are references to a string. Wrap
the specified list into lines of a specified
'width' and place these wrapped lines in
'arr' a list of strings. The 'flags' control
how to wrap the words to a new line.
The 'prefix' string is added to each
wrapped line, except the first line,
unless 'prefix1' is set. If 'prefix' is set to
0(default), do not add a prefix string to
the wrapped lines. The 'prefix1' string is
used for the first line. Use this for the
first line instead of 'prefix'. If 'prefix1' is
set to 0(default), do not add a prefix
string to the first line.

UTF Strings
The CStringUTF8 class extends the C++ string class and provides support for Unicode Trans-
formation Format-8 (UTF-8) strings.

This class supports constructors where the input argument is a string reference, char*
pointer, and wide string, and wide character pointers. Wide string support exists if the macro
HAVE_WSTRING is defined:

 CStringUTF8(const string& src);
 CStringUTF8(const char* src);
 CStringUTF8(const wstring& src);
 CStringUTF8(const wchar_t* src)
 ;

The CStringUTF8 class defines assignment(=) and append-to string (+=) operators where
the string assigned or appended can be a CStringUTF8 reference, string reference, char* pointer,
wstring reference, wchar_t* pointer.

Conversion to ASCII from CStringUTF8 is defined by the AsAscii() method. This method
can throw a StringException with error codes 'eFormat' or 'eConvert' if the string has a wrong
UTF-8 format or cannot be converted to ASCII.

C++ Toolkit Book The CORELIB Module

8-84

 string AsAscii(void) const;
 wstring AsUnicode(void) const;

PCase and PNocase
The PCase and PNocase structures define case-sensitive and case-insensitive comparison func-
tions, respectively. These comparison functions are the Compare(), Less(), Equals(), operator
(). The Compare() returns an integer (-1 for less than, 0 for equal to, 1 for greater than). The
Less() and Equals() return a TRUE if the first string is less than or equal to the second string.
The operator() returns TRUE if the first string is less than the second.

A convenience template function AStrEquiv is defined that accepts the two classes to be
compared as template parameters and a third template parameter that can be the comparison
class such as the PCase and PNocase defined above.

Portable Time Class
The ncbitime.hpp defines CTime, the standard Date/Time class which also can be used to repre-
sent elapsed time. Please note that the CTime class works for dates after 1/1/1900 and should
not be used for elapsed time prior to this date. Also, since Mac OS 9 does not support the day-

light savings flag, CTime does not support daylight savings on this platform.
The subsections that follow discuss the following topics:

• CTime Class Constructors

• Other CTime Methods

CTime Class Constructors
The CTime class defines three basic constructors that accept commonly used time description
arguments and some explict conversion and copy constructors. The basic constructors are the
following:

• Constructor 1:

CTime(
 EInitMode mode = eEmpty,
 ETimeZone tz = eLocal,
 ETimeZonePrecision
 tzp = eTZPrecisionDefault);

• Constructor 2:

CTime(
 int year,
 int month,
 int day,
 int hour = 0,
 int minute = 0,
 int second = 0,
 long nanosecond = 0,
 ETimeZone tz = Local,
 ETimeZonePrecision tzp = eTZPrecisionDefault);

C++ Toolkit Book The CORELIB Module

8-85

• Constructor 3:

CTime(
 int year,
 int yearDayNumber,
 ETimeZone tz = eLocal,
 ETimeZonePrecision tzp = eTZPrecisionDefault);

In Constructor 1, the EInitMode is an enumeration type defined in the CTime class that can
be used to specify whether to build the time object with empty time value(eEmpty) or current time
(eCurrent). The ETimeZone is an enumeration type also defined in the CTime class that is used
to specify the local time zone(eLocal) or GMT(eGmt. The ETimeZonePrecision is an enumera-
tion type also defined in the CTime class that can be used to specify the time zone precision to
be used for adjusting the daylight savings time. The default value(eNone) which means that day-
light savings do not affect time calculatons.

Constructor 2 differs from Constructor 1 with respect to how the timestamp is specified. Here
the time stamp is explictly specified as the year, month, day, hour, minute, second, nanosecond
values. The other parameters of type ETimeZone and ETimeZonePrecision have the meanings
discussed in the previous paragraph.

Constructor 3 allows the timestamp to be constructed as the Nth day (yearDayNumber) of a

year(year). The other parameters of type EtimeZone and ETimeZonePrecision have the mean-

ings discussed in the previous paragraph.
The explicit conversion constructor allows the conversion to be made from a string represen-

tation of time. The default value of the format string is kEmptyStr which implies that the format

string has the format "M/D/Y h:m:s". As one would expect, the format specifiers, M, D, Y, h, m, s
have the meanings month, day, year, hour, minute, second, respectively:

explicit CTime(
 const string& str,
 const string& fmt = kEmptyStr,
 ETimeZone tz = eLocal,
 ETimeZonePrecision tzp = eTZPrecisionDefault);

There is also a copy constructor defined that permits copy operations for CTime objects.

Other CTime Methods
Once the CTime object is constructed it can be accessed using the SetTimeT() and GetTimeT()
methods. The SetTimeT() method is used to set the CTime with the timestamp passed by the
time_t parameter. The GetTimeT() method returns the time stored in the CTime object as a
time_t value. The time_t value measures seconds since January 1, 1900, so do not use these
methods if the timestamp is less than 1900. Also time formats are in GMT time format.

A series of methods that set the time using the database formats TDBTimeI and TDBTimeU
are also defined. These database time formats contain local time only and are defined as type-
defs in ncbitime.hpp. The mutator methods are SetTimeDBI() and SetTimeDBU(), and the
accessor methods are GetTimeDBI() and GetTimeDBU().

C++ Toolkit Book The CORELIB Module

8-86

You can set the time to the current time using the SetCurrent() method, or set it to "empty"
using the Clear() method. If you want to measure time as days only and strip the hour, minute,
second information you can use Truncate() method.

You can get or set the current time format using the GetFormat() and SetFormat() methods.
You can get and set the individual components of time such as year, day, month, hour,

minute, second, nanosecond. The accessor methods for these components are named after the
component itself and their meaning is obvious. For example, Year() for getting the year compo-
nent, Month() for getting the month component, Day() for getting the day component, Hour() for
getting the hour component, Minute() for getting the minute component, Second() for getting the
second component, and NanoSecond() for getting the nanosecond component. The correspond-
ing mutator methods for setting the individual components are the same as the accessor except
that they have the prefix "Set" before them. For example, the mutator method for setting the day
is SetDay(). A word of caution on setting the individual components. You can easily set the times-
tamp to invalid values such as changing the number of days in the month of February to 29 when
it is not a leap year, or 30 or 31.

A number of methods are available to get useful information from a CTime object. To get a
day's year number (1 to 366) use YearDayNumber(). To get the week number in a year, use
YearWeekNumber(). To get the week number in a month, use MonthWeekNumber(). You can
get the day of week (Sunday=0) by using DayOfWeek(), or the number of days in the current
month by using DaysInMonth().

There are times when you need to add months, days, hours, minutes, seconds to an existing
CTime object. You can do this by using the AddXXX() methods where the "XXX" is the time
component such as "Year", "Month", "Day", "Hour", "Minute", "Second", "NanoSecond" that is to
be added to. Be aware that because the number of days in a month can vary adding months may
change the day number in the timestamp. Operator methods for adding to (+=), subtracting from
(-=), incrementing (++), decrementing (--) days are also available.

If you need to compare two timestamps, you can use the operator methods for equality (==),
in-equality (!=), earlier than (<), later than (>), or a combination test such as earlier than or equal
to (<=), or later than or equal to (>=).

You can measure the difference between two timestamps in days, hours, minutes, seconds,
or nanoseconds. The timestamp difference methods have the form DiffXXX() where "XXX" is the
time unit in which you want the difference calculated such as "Day", "Hour", "Minute", "Second",
or "NanoSecond". Thus, DiffHour() can be used to calculate the difference in hours.

There are times when you may need to do a check on the timestamp. You can use IsLeap()
to check if the time is in a leap year, or if it is empty by using IsEmpty(), or if it is valid by using
IsValid(), or if it is local time by using IsLocalTime(), or if it is GMT time by using IsGmtTime().

If you need to work with time zones explicitly, you can use GetTimeZoneFormat() to get the
current time zone format, and SetTimeZoneFormat() to change it. You can use GetTimeZone-
Precision() to get the current time zone precision and SetTimeZonePrecision() to change it. To
get the time zone difference between local time and GMT, use TimeZoneDiff(). To get current
time as local time use GetLocalTime(), and as GMT time use GetGmtTime(). To convert current
time to a specified time zone use ToTime(), or to convert to local time use ToLocalTime().

C++ Toolkit Book The CORELIB Module

8-87

Also defined for CTime are assignment operators to assign a CTime object to another
CTime, and an assignment operator where the right hand side is a time value string.

Template Utilities
The ncbiutil.hpp file defines a number of useful template functions, classes and struct definitions
that are used in other parts of the library.

The following topics are discussed in this section:

• Function Objects

• Template Functions

Function Objects
The p_equal_to and pair_equal_to are template function classes that are derived from the stan-
dard binary_function base class. The p_equal_to checks for equality of objects pointed to by a
pointer and pair_equal_to checks whether a pair's second element matches a given value.
Another PPtrLess function class allows comparison of objects pointed to by a smart pointer.

The CNameGetter template defines the function GetKey() which returns the name attribute
for the template parameter.

Template Functions
A number of inline template functions that make it easier to perform common operations on map
objects are defined.

The NotNull() checks for a null pointer value and throws a CCoreException, if a null value is
detected. If the pointer value is not null, it is simply returned.

The GetMapElement() searches a map object for an element and returns the element, if
found. If the element is not found it returns a default value which is usually set to 0 (null).

The SetMapElement() sets the map element. If the element to be set is null, it's existing key
is erased.

The InsertMapElement() inserts a new map element.
The GetMapString() and SetMapString() are similar to the more general GetMapElement()

and SetMapElement() except that they search a map object for a string. In the case of GetMap-
String() it returns a string, if found, and an empty string ("") if not found.

There are three overloads for the DeleteElements() template function. One overload accepts
a container (list, vector, set, multiset) of pointers and deletes all elements in the container and
clears the container afterwards. The other overloads work with map and multimap objects. In
each case, they delete the pointers in the map object and clear the map container afterwards.

The AutoMap() template function works with a cache pointed to be an auto_ptr. It retrieves
the result from the cache and if the cache is empty it inserts a vaue into the cache from a speci-
fied source.

C++ Toolkit Book The CORELIB Module

8-88

A FindBestChoice() template function is defined that returns the best choice (lowest score)
value in the container. The container and scoring functions are specified as template parameters.
The FindBestChoice() in turn uses the CBestChoiceTracker template class that uses the stan-
dard unary_function as it's base class. The CBestChoiceTracker contains the logic to record the
scoring function and keep track of the current value and the best score.

Miscellaneous Types and Macros
The ncbimisc.hpp file defines a number of useful enumeration types and macros that are used in
other parts of the library.

The following topics are discussed in this section:

• Miscellaneous Enumeration Types

• AutoPtr Class

• ITERATE macros

• Sequence Position Types

Miscellaneous Enumeration Types
The enum type EOwnership defines the constants eNoOwnership and eTakeOwnership. These
are used to specify relationships between objects.

The enum type ENullable defines the constants eNullable and eNotNullable. These are used
to specify if a data element can hold a null or not-null value.

AutoPtr Class
The ncbimisc.hpp file defines an auto_ptr class if the HAVE_NO_AUTO_PTR macro is undefined.

This is useful in replacing the STL's std::auto_ptr for compilers with poor "auto_ptr" implementa-
tion. Section STL auto_ptrs discusses details on the use of auto_ptr.

Another class related to the auto_ptr class is the AutoPtr class. The Standard auto_ptr
class from STL does not allow the auto_ptr to be put in STL containers such as list, vector, map
etc. Due to nature of how ownership works in an auto_ptr class, the AutoPtr's copy constructor
and assignment operator modify the state of the source AutoPtr object as it transfers ownership
to the target AutoPtr object.

A certain amount of flexibility has been provided in terms of how the pointer is to be deleted.
This is done by passing a second argument to the AutoPtr template. This second argument
allows the passing of a functor object that defines the deletion of the object. You can define "mal-
loc" pointers in AutoPtr, or you can use an ArrayDeleter template class to properly delete an
array of objects using "delete[]". By default, the internal pointer will be deleted using the "delete"
operator.

C++ Toolkit Book The CORELIB Module

8-89

ITERATE macros
When working with STL container classes, it is common to use a for-statement to set up a loop to
iterate through the elements in a container. For this reason the ITERATE and

NON_CONST_ITERATE macros have been defined to sequence through the container elements.

These macros are listed here as their code more clearly explains how they work:

#define ITERATE(Type, Var, Cont) \
 for (Type::const_iterator Var = (Cont).begin(), NCBI_NAME2(Var,_end) = (Cont).end(); Var !=
NCBI_NAME2(Var,_end); ++Var)

#define NON_CONST_ITERATE(Type, Var, Cont) \
 for (Type::iterator Var = (Cont).begin(); Var != (Cont).end(); ++Var)

The difference between the ITERATE and NON_CONST_ITERATE is that the former uses a
constant iterarator and the latter uses a non constant iterator.

The upper case versions of these macros is preferred by convention. Lower case versions of
these macros are also defined but their use has been deprecated.

Sequence Position Types
The TSeqPos and and TSignedSeqPos are defined to specify sequence locations and length.
TSeqPos is defined as an unsigned int and TSignedSqPos is a signed int that should be used
only when negative values are a possibility for reporting differences between positions, or for
error reporting -- though exceptions are generally better for error reporting.

